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PREFACE

The advent of high energy heavy ion beams in various energy ranges has led to the

discovery of a number of significant nuclear phenomena. The fission of highly excited

compound nuclei formed in heavy ion induced fusion reactions has emerged as a topic

of considerable interest in the recent years. Multiplicity measurements of light particles

and photons strongly suggest that fission is a much slower process for hot nuclei than

that determined from the statistical model of Bohr and Wheeler based on phase space

arguments. This led to the introduction of dynamical effects, specially the concept of

nuclear friction in the description of fission of hot nuclei. Dissipative dynamical models

based on the Langevin equation were developed and were applied successfully for fission

dynamics of highly excited heavy nuclei. However, Wall Friction(WF), the standard

version of nuclear friction when incorporated in the Langevin dynamical model was

not able to reproduce simultaneously experimental data for both prescission neutron

multiplicity (npre) and fission probability (pf). Consequently, an empirical reduction

in the strength of the wall friction was found necessary to reproduce the experimental

numbers by many workers. Interestingly, a modification of the wall friction was pro-

posed recently where the reduction was achieved microscopically. This modified version

is known as the chaos weighted wall friction(CWWF) which takes into account non-

integrability of single particle motion. The work in my thesis aims at using this strongly

shape dependent version of friction (CWWF) in the Langevin dynamical model coupled

with particle and gamma evaporation in order to verify to what extent it can account

for the experimental data of fission of hot nuclei. The present endeavour is an effort to

obtain a clear physical picture of nuclear dissipation which in turn will help in solving

many open problems related to collective motion, and in particular, nuclear fission. An

important application of current interest could be the theoretical prediction of survival

probability of superheavy elements against fission which depends sensitively on nuclear

dissipation on the fission path.
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Outline of the thesis:

The work to be presented in this thesis is divided into seven chapters and seven

appendices. Chapter 1 gives an overview of the subject, where the relevant literature

is reviewed briefly. In Chapter 2 our model for Langevin dynamics of nuclear fission

will be described in details. The origin of the different inputs used in our calculation,

namely, potential, inertia and level density parameter will be discussed. The chaos

weighted wall friction which is used for nuclear dissipation in the dynamics and will

be tested for the first time will be described elaborately in this chapter. Chapter 3

contains the procedure of solving the Langevin equation for strongly shape dependent

friction in order to calculate fission width which are subsequently utilized in further cal-

culations. The fission widths are calculated using both the wall friction and the chaos

weighted wall friction. In Chapter 4, the different steps of the combined dynamical and

statistical model which couples particle and γ evaporation with Langevin dynamics,

is described. The excitation functions of the prescission neutron multiplicity and the

fission probability calculated from the model using both the versions of the friction are

compared with the experimental data for a number of nuclei in this chapter. Chapter 5

is devoted to the calculation of the evaporation residue cross section excitation function

as a probe for nuclear friction which is compared with experimental data. Chapter

6 discusses in details the effects of transients in nuclear fission on prescission neutron

multiplicity. Chapter 7 contains the thesis summary, conclusions and future directions

of our work. Some details of the formulation and the computation are given in the

different appendices. The cumulative references for all the chapters are given at the

end.

Based on the work presented in this thesis, following papers have been published in

refereed international journals. The listings at http://arXiv.org are given at the end of

each reference.
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Chapter 1

Introduction

The study of large scale nuclear dynamics (e.g. deep inelastic collisions and fission)

initiated by energetic heavy ion beams above the Coulomb barrier is an active area of

research in nuclear physics and presents a number of theoretical challenges. In par-

ticular, one of the exciting aspects in such studies is that in these energetic nuclear

reactions, concepts of non-equilibrium statistical physics, such as dissipation or ther-

malization, are extended to small and dense Fermion systems. The energy scale under

consideration here ranges from that above the Coulomb barrier and extends up to the

Fermi energy domain(∼ 30 MeV/nucleon). The availability of heavy-ion beams in vari-

ous energy ranges and the emergence of exclusive measurements in different experiments

(which provide more insight into the nuclear dynamics than the inclusive experiments)

motivated the development of theoretical approaches such as transport theories and the

time dependent Hartee-Fock(TDHF) theory. In particular, the transport theories[1, 2]

were developed using the general framework of nonequilibrium statistical physics, the

kinetic theory and the stochastic methods. In such descriptions dissipation, i.e., the

irreversible flow of energy between the collective and intrinsic degrees of freedom of the

system and the associated fluctuations play very important role. An estimate of the

nuclear dissipation or friction was first made from the analysis of deep inelastic collision

and heavy ion induced fusion experimental data with classical trajectory models[3, 4].

However the results turned out to be widely varying even by orders of magnitude. The

advent of exclusive measurements and sophisticated experimental techniques as well

as the development of improved theoretical models contributed in narrowing down the
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range of magnitude of nuclear friction to a great extent. A comparison of the experimen-

tal results with the phenomenological Langevin or Fokker-Planck models has allowed

to extract the key parameters entering these description, namely the nuclear friction.

On the other hand, the microscopic derivation of the nuclear friction coefficient has

attracted a large amount of theoretical effort. Over the years, different microscopic

as well as phenomenological attempts have been made to derive the nuclear friction

coefficient but any unambiguous prescription for nuclear friction is yet to be achieved.

In this thesis, we shall be concerned with a detailed study of the fission dynamics of

highly excited nuclei formed in heavy-ion collisions using a theoretical model of nu-

clear dissipation(a modified version of the wall friction). Our main aim in this work is

to test this theoretical model as a candidate for nuclear friction without any tunable

parameter. Such a nuclear friction has immense applicability in predicting survival

probability of superheavy nuclei against nuclear fission and production cross section of

fission fragments in ISOL-type radioactive ion beam facilities.

1.1 Overview

1.1.1 General

In order to present an overview of the advances of the many body aspects of nuclear

dynamics, it is illuminating to begin with one of the most fundamental contributions

to this field credited to Niels Bohr, whose work had a profound impact on the post-

1930s development of nuclear physics. The pioneering contribution to this field is the

“compound nucleus theory” of Bohr which has a fascinating appeal in many aspects

of nuclear dynamics. The basic idea of the compound nucleus model is a strong and

intimate coupling of all the nucleons with each other. This subsequently led to the

development of the nuclear liquid drop model by Bohr and Kalckar[5]. It was this model

which enabled Meitner and Frisch[6] to explain why a nucleus may undergo fission, and

this led Bohr and Wheeler[7] to develop their celebrated formula for a first quantitative

description of the decay rate of nuclear fission. This work also laid the foundation

for the concept of nuclear collective motion. The standard analysis of induced nuclear

fission is based on the Bohr-Wheeler formula for the fission width ΓBW which depends
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on the ratio of the phase spaces available at the saddle point to that at the ground state

and is given by the following expression.

ΓBW =
h̄

2πρ(E∗)

∫ E∗−Ef

0
dερ∗(E∗ − Ef − ε), (1.1)

where E∗ is the excitation energy, Ef is the height of the fission barrier, ε is the kinetic

energy, and ρ∗ is the density of levels of the compound nucleus at the saddle point

which arises from excitations of the intrinsic degrees of freedom only and ρ denote the

level densities of the fissioning nucleus at the ground state. A simplified expression is

obtained with the Fermi gas model for the level densities which is given by ρ(E) ∼ e2
√

aE ,

the constant temperature approximation E = aT 2 and the condition E∗ ≫ Ef

ΓBW =
h̄T

2π
e−Ef/T . (1.2)

where a is the usual level density parameter. It yields the fission width as a function of

the fission barrier height Ef and the nuclear temperature T. This description of nuclear

fission does not invoke any dynamical features and hence is independent of the nuclear

friction. It is however interesting to note that it is mentioned in the addendum of

Bohr’s paper[5] that “non-viscous fluid can hardly be maintained in view of the close

coupling between the motions of the individual nuclear particles.” Kramers[8] took

up this point and derived a formula for the fission decay rate in which a correction

factor(K) appeared to the Bohr-Wheeler expression, which was governed by nuclear

friction. Kramers formula for fission width (ΓK = KΓBW ) is related to that of Bohr-

Wheeler (ΓBW ) by the factor K = [
√

β̃2 + 1− β̃], where β̃ is proportional to the nuclear

friction coefficient η. Kramers pictured the collective motion as a transport process

in collective phase space. He dealt with the general problem of Brownian motion in a

heat bath in the presence of a potential barrier. The importance of Kramers idea was

realized much later in nuclear physics with the advent of heavy ion accelerators with

which nuclear systems could be excited to much higher energies and it was thus realized

that the energy stored in the collective motion can be dissipated.

Different microscopic theories were developed to describe nuclear collective motion.

This began in the early fifties with the unified model of Bohr and Mottelson [9]. Small

amplitude collective motion like the normal vibration modes of a nucleus were explained
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by the random phase approximation(RPA)[10]. However, the RPA is typically a small

amplitude approximation, and cannot describe collective processes during which nu-

clear wave function undergoes important alterations, such as fission, fusion, heavy ion

reactions etc. Microscopic theories for large amplitude motion of many body fermion

systems are usually based on a mean field description known as time dependent Hartee-

Fock method(TDHF) developed in the 1970s, and its variants like ATDHF [10]. The

TDHF equation is a nonlinear equation for the one-body density matrix ρ and a first-

order differential equation in time, which in its simplest form reads like

ih̄ρ̇ = [h, ρ] (1.3)

with h = t + Γ. t is the kinetic energy, and Γ is the self consistent mean field which

depends on the density of the nucleus. It was realized that as the excitation energies

become higher and is around the regime of Fermi energy/nucleon, the nucleon-nucleon

correlations become dominant over the effects of the averaged forces and it would be

thus necessary to look beyond mean field description. Application of TDHF requires a

large mean free path and hence is a good approximation for the low energy heavy ion

collisions. However, at high collision energies, the mean free path is strongly reduced

due to the large excitation energies involved in the process. Thus the inclusion of resid-

ual two-body collisions in a self consistent mean-field theory (generalized or extended

TDHF) is a natural step of a more realistic description of heavy-ion collisions at high

excitation energies. However, because of numerical difficulties, realistic applications of

these approaches seem to be difficult even with the fastest available computers. This

has been tried in various versions but it had soon become clear that all one is able to

do numerically is to solve such equations in a semi-classical limit, e.g., in the version

of the Boltzman-Uehling-Uhlenbeck(BUU) or Landau-Vlasov equation[11]. The BUU

equation is as follows

∂f

∂t
+ ~v · ~∇rf − ~∇rU · ~∇pf = − 1

(2π)6

∫

d3p2d
3p2′dΩ

dσ

dΩ
v12

×{[f1f2(1 − f1′)(1 − f2′) − f1′f2′(1 − f1)(1 − f2)]

×(2π)3δ3(~p1 + ~p2 − ~p1′ − ~p2′)}. (1.4)

where the right hand side is the collision integral including the Pauli blocking and when
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it is set equal to zero, one obtains the Vlasov equation.

The macroscopic variables behind TDHF are the ones which relate to matrix ele-

ments of the one-body density operator. A much simpler version is given if one param-

eterizes the time evolution of the mean field by time dependent shapes and provided it

is possible to complement such a description with the dynamics of a conjugate momen-

tum, one may view this motion as a transport process in collective phase space. This

gave rise to the revival of the theoretical studies based on the original works of Kramers

who viewed the collective dynamics on similar lines. There have been (a) applications

of linear response theory to formulate a theoretical description appropriate for heavy-

ion collisions by Hofmann and Siemens[12, 13], (b) the applications of the methods of

spectral distributions or the random matrix model by the groups of Nörenberg [14] and

Weidenmüller[1, 14, 15] and (c) the suggestion of Norenberg to model relative motion

of two heavy ions by way of a “dissipative, diabatic dynamics(DDD)” [2]. The linear

response theory aims at describing large-scale collective motion on the basis of a locally

harmonic approximation. This approximation is exploited to define propagators and to

derive equations for their dynamics in small areas of phase space and over time lapses

which are small on a macroscopic scale. In the work of Weidenmüller et al.[15], the

statistical properties of matrix elements which couple the collective degrees of nuclear

motion with the intrinsic degrees of freedom, are evaluated in an adiabatic approxima-

tion. A random-matrix model is used for the residual interaction. The basic idea of

DDD[16, 17] is that the energy dissipation in slow collective nuclear motion is viewed

as a combined effect of a diabatic production of particle-hole excitations, leading to a

conservative storage of collective energy, and a subsequent equilibration due to residual

two-body collisions. The effective equation of motion for the collective degree of free-

dom contains a time retardation in the dissipative term and allows for a simultaneous

description of two different attitudes of nuclear matter. The elastic response of heavy

nuclei for ‘fast’ collective motion switches over to pure friction for very ‘slow’ collec-

tive motion. A first application of the diabatic dynamical approach is made for the

quadrupole motion within a diabatic deformed harmonic oscillator basis.

The concept of friction and the associated statistical fluctuations play an important
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role in many areas of physics, chemistry and biology, when one is dealing with transport

processes. The equations which are usually applied are master equations, Fokker-Planck

equations and Langevin equations. The books of Risken [18], Van Kampen[19], and the

article of Hanggi et al.[20] provide complete mathematical background of the subject.

With the discovery of deep-inelastic processes in heavy-ion collisions, the concept of

friction was introduced in the description of complex nuclear reactions, where it was

impossible to follow all involved degrees of freedom explicitly. First, models with clas-

sical trajectories which are determined by conservative and frictional forces have been

developed[4]. Then, Norenberg [21] introduced a Fokker-Planck equation for the de-

scription of charge transfer as a diffusive process in deep-inelastic heavy-ion collisions.

Subsequently, multi-dimensional Fokker-Planck equations were applied by many au-

thors in order to describe deep-inelastic differential cross sections with respect to the

scattering angle, energy loss, and to mass and charge transfer variables.

It has always been a challenge to extend Kramers’ result of the decay of a metastable

system to the quantal regime. It was only in the 80’s that one began to understand

how to incorporate quantum effects and among the vast literature available on “dissi-

pative tunneling” one may refer to [20, 22, 23]. Common to all these approaches is the

application of the technique of path integrals for imaginary time propagation. For nu-

clear fission and nuclear multifragmentation, a formulation with real time propagation

is much more appropriate. This has been achieved by a suitable application of linear

response theory. The transport equation obtained is similar in structure to that of

Kramers’, with only the diffusive terms being modified to take account of the quantum

effects[24]. The modification of Kramers’ equation using quantal diffusion coefficients

is also studied in Ref. [25]. In Ref. [26], the decay of a metastable system is described

by extending Kramers’ method to the quantal regime. It is seen that the quantum

corrections to the decay rate would lead to an increase of the later [27]. This effect is

significant for temperatures of the order of 1 MeV or less.



7

1.1.2 Nuclear Fission

Nuclear fission is one of the earliest and most thoroughly studied of all nuclear phenom-

ena. Fission is the most prominent and classic example of ‘slow’ large-scale collective

motion in nuclear physics. The standard statistical model of Bohr and Wheeler [7]

was sufficient for a long time to describe the observed effects of nuclear fission till

the availability of high energy heavy-ion beams. A spate of experimental data from

heavy-ion induced reaction studies, carried out in the last two decades have resulted

in the interesting observation of unexpectedly large pre-scission yields of charged par-

ticles [28], neutrons [29], and giant dipole resonance(GDR) decay γ rays [30] from the

compound system before fission. The standard statistical model was found to under-

estimate the prescission yields of particles and γ-rays, the discrepancy being large at

excitation energies greater than 50 MeV. The underestimation of prescission particles

at high excitation energies by the statistical model led one to think that sufficient time

is not available for the particles to evaporate prior to fission. In other words, the fission

width calculated on the basis of phase space arguments is overestimated in statistical

model at high excitation energies. At lower excitation energies the standard statistical

model calculations hold good because in this energy regime, the particle multiplicity has

negligible dependence on the fission width and hence the simplified arguments used in

statistical model was sufficient to reproduce the particle multiplicities. However, with

the increase in the excitation energies, fission width increases and becomes comparable

to the particle emission widths and the dependence of the particle multiplicities on

fission width becomes significant. This realization motivated more rigorous calculation

of the fission width invoking dynamical effects at higher excitation energies and led one

to look beyond the standard statistical model. The experimental data revealed that

fission of hot nuclei is a slower process than that predicted by the statistical model.

The need for a slowing down mechanism naturally suggests one to consider the effects

of nuclear friction on fission lifetime and this inspired the use of a transport description

of fission since it includes the dynamical features not contained in the statistical model.

This gave rise to the revival of the theoretical studies based on the original works of

Kramers who considered induced nuclear fission as a transport process of the fission
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degree of freedom over the fission barrier as a consequence of thermal fluctuations. Dis-

sipative dynamical models for fission of hot nuclei based on the transport theory were

subsequently developed.

1.2 Dissipative dynamical model of nuclear fission

1.2.1 Introduction

The goal of any transport theory is to reduce the description of the time evolution of

a complex system to that of a small subset of its degrees of freedom. The dynamics

of the residual set is not explicitly considered though their effect is taken into account

in some average sense. Often the first class of variables is referred to as the collective

or “macroscopic” ones, whereas the rest of the degrees of freedom is referred to as the

“intrinsic” system. The notion macroscopic indicates that in many cases these variables

are chosen to represent quantities whose dynamics can be visualized as a transport of

matter, total charge etc. A macroscopic description of fission dynamics is based on

the idea that the gross features of the fissioning nucleus can be described in terms of

a small number of variables called the collective variables or the collective degrees of

freedom. At nuclear excitations which give rise to temperatures up to a few MeV , the

dominant collective modes relevant for nuclear fission are expected to be those involving

changes in the nuclear shape, and the coordinates of the nuclear surface itself provide

a natural set of collective variables. In the transport theory which is also referred to

as the dissipative dynamical model, the dynamics associated with the fission degree

of freedom(collective motion) with a large inertial mass is considered to be similar to

that of a massive Brownian particle floating in a viscous heat bath under the action

of a potential field. The rest of the nuclear system comprising of a large number of

intrinsic degrees of freedom (assumed to be in thermal equilibrium) is identified with

the heat bath. It is also assumed that the impact of Brownian particle dynamics on

the heat bath is insignificant. It is of great importance, however, to understand how

the heat bath influences the dynamical macroscopic object. In fact, the introduction of

the heat bath makes the dynamics of the Brownian particle irreversible and will exhibit

fluctuations in observable quantities. Fluctuations arise in the theoretical description,



9

because attention is focussed entirely on a few degrees of freedom (the collective vari-

ables), and the loss of information caused by disregarding the many other degrees of

freedom manifests as sizeable fluctuations in physical observables. In most cases the

inertial mass associated with the collective degree of freedom is large enough so that its

dynamics is governed entirely by the laws of classical physics. This separation of the

whole system into a Brownian particle and a heat bath relies on the basic assumption

that the equilibration time of the intrinsic degrees of freedom(τequ) is much shorter than

the typical time scale of collective motions(τcoll), i.e, the time over which the collective

variables change significantly. The separation of these two time scales allows the de-

composition of the Hamiltonian into a collective part(describing the shape degrees of

freedom) and a intrinsic part (describing the intrinsic degrees of freedom). Moreover,

if one assumes that the intrinsic motion loses memory very quickly, one can easily de-

rive transport equations for the collective degrees of freedom. If τPoincaré is the time it

takes the entire system to return to a point very close to its original position in phase

space (Poincaré recurrence time) then it should be much greater than the time scale for

collective motion so that the collective dynamics is irreversible. Thus the time scales

governing the behavior of an equilibrating system must obey the following inequalities

for a transport description to be viable.

τequ ≪ τcoll ≪ τPoincaré. (1.5)

The domain of applicability of transport theories has been extensively discussed in the

case of deep inelastic heavy-ion reactions in Ref. [1]. Later it was found that trans-

port theories can also be applied for describing competitive decay of composite nuclear

systems [31]. The crucial parameters in a diffusion model for fission are the nuclear

friction η, which gives the strength of the coupling between the fission and the intrinsic

degrees freedom, and the diffusion constant D, related to each other by the Einstein

relation. A diffusion model is applicable to fission when the internal equilibration time

tequ of the heat bath is small compared to the characteristic time of the diffusion pro-

cess itself(related to η−1), and to τf (=h̄/Γf) and τn(=h̄/Γn), where Γf (Γn)are the fission

(neutron) widths at the excitation energies under consideration. On the basis of micro-

scopic considerations, simple estimates of these time scales(leading to tequ ≃ 3 × 10−22
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sec) suggest a diffusion model is applicable for η
m

≤ 3 × 1021 sec−1 [32] (m being the

mass of the Brownian particle), and for excitation energies of 100 MeV or more. We

shall assume that the transport(diffusion) equation will be applicable to nuclear fission

at high excitation energies in the dissipative dynamical model.

The description of the intrinsic modes of excitation in terms of a heat bath has

two consequences. First, energy flows irreversibly from the collective motion into the

intrinsic excitation and manifests as a friction force in the collective dynamics. Second,

the fact that the dynamics of the intrinsic degrees of freedom, collectively represented

by the temperature T, are uncorrelated gives rise to random features in the coupling

between the heat bath and the collective motion. As a consequence energy is exchanged

randomly in both directions in a fine time scale, though the net flow is into the heat

bath over a larger time scale. Thus, the time development of the collective variable has

a random character. This is analogous to that of a Brownian particle which collides

with gas molecules having a Maxwellian velocity distribution. The Brownian particle

undergoes a random walk and is slowed down but on a staggering path. The mo-

tion of a Brownian particle in an external force field which essentially is the model of

fission dynamics considered here, can be described by two alternative but equivalent

mathematical formulations, which will be briefly described in the following subsections.

1.2.2 Fokker-Planck equation

The Fokker-Planck equation and the Langevin equation are the two equivalent descrip-

tions of a Brownian particle in a heat bath. The Fokker-Planck equation can be derived

starting from the Langevin equation[33]. One begins with the Liouville equation which

describes the conservation of probability, i.e., with the continuity equation for proba-

bility,

∂

∂t
f(p, t) = − ∂

∂p
(ṗ(t) · f(p, t)), (1.6)

where f is the distribution function in momentum space. The Langevin equation de-

scribing the motion of a Brownian particle of mass m (to be described in detail in the

next subsection) in the presence of a potential V and friction coefficient η reads as
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follows
dp

dt
= − η

m
p + R(t) −∇V (1.7)

Substituting for ṗ from Eq. 1.7 and integrating Eq. 1.6 between t and t + ∆t, (∆t is

much larger than the time scale of the random force R(t)) leads to

f(p, t + ∆t) =

[

1 +
∫ t+∆t

t
dt1Ω(p, t1) +

∫ t+∆t

t
dt1

∫ t1

t
dt2Ω(p, t1)Ω(p, t2) + . . .

]

f(p, t)

(1.8)

where

Ω(p, t) =
∂

∂p
(
η

m
p − R(t) + ∇V ) (1.9)

Taking an average over all possible realizations of the random force R(t) and using the

properties of R(t) (to be discussed in the next subsection), in the limit ∆t → 0, it can

be shown that

∂

∂t
f(r, p; t)+

(p · ∇r)

m
f(r, p; t)−(∇rV ·∇p)f(r, p; t) = ∇p(

η

m
pP (r, p; t))+

∇2
p

2
(Df(r, p; t)).

(1.10)

where D is the mean square strength of the random force. This equation is known as

the Fokker-Planck equation or the Kramers equation. The fact that it is possible to

derive the Fokker-Planck equation from the Langevin equation (using the continuity

equation or the master equation) clarifies the relation between the two equations and

establishes their equivalence.

The Fokker-Planck equation is a probabilistic dynamical description and it deals

with the time-evolution of the distribution function of the Brownian particle. The

probability distribution f(r,p,t) for finding the particle at a point(r,p) in classical phase

space is obtained by solving the above Fokker-Planck equation. Kramers(1940) applied

it to the decay rate of nuclear fission. He obtained the equilibrium solution of the above

equation and derived the quasi stationary fission width from it which is given by the

following expression.

ΓK =
h̄ω1

2π
{[1 + (

η

2mω0
)
2

]
1/2

− η

2mω0
} · exp (−Ef/T ). (1.11)

Here ω0 and ω1 are the oscillator frequencies of the parabola osculating the nuclear

potential in the first minimum and at the saddle respectively. In the limit of small η,
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ΓK reduces to the transition state expression given by

ΓBW =
h̄ω1

2π
exp (−Ef/T ). (1.12)

The Kramers width ΓK is related to the Bohr-Wheeler width ΓBW (Eq. 1.2) through

the Kramers factor K(also called reduction factor) which is given by {[1 + ( η
2mω0

)2]
1/2−

η
2mω0

}. In Eq. 1.12, ΓBW is the Bohr-Wheeler width corrected for the presence of collec-

tive vibrations[34] in the potential pocket not taken into account in the density of levels

ρ(E∗) in Eq. 1.1 (refer section 1.1.1). The Kramers factor depends on the nuclear fric-

tion coefficient η and is interpreted as a restriction in phase space around saddle point

due to friction. It is thus remarkable that the importance of friction in nuclear dynamics

was anticipated by Niels Bohr in 1939, and H. A. Kramers correctly predicted a reduc-

tion of fission width which was experimentally confirmed after about 50 years. Between

1940 and the beginning of the 80s Kramers approach did not attract much attention in

the context of nuclear fission. This happened because the simple Bohr-Wheeler formula

worked well, at least within the uncertainties of the fission barrier height and of the

level density parameter. Forty years later, in the eighties, Weidenmuller and his group

[35] followed the line of approach of Kramers and adopted the diffusion model to in-

vestigate how the quasistationary flow over the fission barrier is attained. Their study

was motivated by the experimental findings [36] which seemed inconsistent with the

Bohr-Wheeler prediction in showing an excess of evaporated neutrons. They succeeded

in getting the time dependent solution of the two dimensional Fokker-Planck equation

after making a number of simplifying assumptions and obtained the time dependent fis-

sion width Γf (t) by calculating the probability current through the saddle point. Their

work first showed that for finite values of the friction coefficient η, there is a time τ

which elapses between the start of the induced fission process and the attainment of

the stationarity condition. This time τ depends on η and during this time fission is

suppressed. The larger the value of τ , more will be the time for evaporation and more

strongly will particle and gamma evaporation compete with the fission process. Their

study first established the importance of ‘transients’, i.e., those processes which occur

before the quasistaionary flow over the barrier is attained. They showed that the fission

probability Pf is modified compared to the Bohr-Wheeler formula in two ways: (i) Pf
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suffers an overall reduction in the stationary fission rate due to friction (reduction factor

K of Kramers) (ii) the inclusion of transients reduces Pf further, particularly at higher

excitation energies. Both these effects will significantly increase the neutron emission

as demanded by the experimental data. It was also shown that the entire fission process

becomes a transient when there is no fission barrier [37]. The detailed study of tran-

sients in nuclear fission were considered in a series of publications. We shall discuss our

own contribution to this topic in chapter 6. Dynamical studies of induced fission with

the Fokker-Planck or Kramers equations have also been studied by other groups[38, 39]

investigating the reduction of the Bohr-Wheeler width by the Kramers factor as well as

the existence of the transient time. These findings stimulated refined measurements of

the multiplicities of neutron, light charged particles and photons[29, 40]. Theoretical

developments were made for a proper description of the competitive decays of particle

evaporation and fission[39, 41, 42], an effect which becomes especially important when

one considers the fission of hot nuclei. Multi-dimensional Fokker-Planck equations were

subsequently applied to the description of nuclear fission[43].

Analytic solutions of the Fokker-Planck equations were initially restricted to the use

of the quasi-linear method, in which the driving terms are expanded to the lowest order

and only the first and second moments of the Fokker-Planck equation together with

a Gaussian ansatz are used to calculate the distribution function at large times, from

which the cross sections can be obtained. However it turns out that in many cases the

Gaussian ansatz is not a good approximation. The multi-dimensional Fokker-Planck

equations for deep-inelastic collisions and induced fission can be solved numerically with

grid methods which is an exact procedure but turns out to be extremely difficult even

with present day computers. Modelling the same problem in terms of the equivalent

Langevin equations, and solving these equations by Monte-Carlo sampling, is a more

practicable way for obtaining more accurate solutions than with the Gaussian ansatz.

Suggestions were made to apply Langevin equation in nuclear physics in Refs. [44, 45].

The first calculations using Langevin equation were performed later, for deep-inelastic

procesess by Barbosa et al. [46], for fission by Abe et al. [33] and for fusion by

Fröbrich[47]. Since then a large volume of work have been reported , which have applied
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Langevin equation with the aim to describe data for deep-inelastic heavy-ion collisions,

fusion, and heavy-ion induced fission.

1.2.3 Langevin equation

Langevin approach which is an alternative description of the Brownian motion was first

proposed by Y. Abe [33] as a phenomenological framework to describe nuclear fission

dynamics. The Fokker-Planck equation deals with the time evolution of the distribution

function(in classical phase space) of the Brownian particle while the Langevin equation

deals directly with the time evolution of the Brownian particle and hence is much more

intuitive. The two approaches describe different aspect of the dynamics but they are

equivalent with respect to their physical content. The motion of a Brownian particle

under the action of a external force field as given by the one-dimensional Langevin

equation (1.7) can be written as follows,

dp

dt
= F (t) + H(t) (1.13)

where F (t) is the external force and H(t) is given by

H(t) = − η

m
p + R(t) (1.14)

The coupling of the collective motion with the heat bath is described by H(t). It has

two parts; a slowly varying part which describes the average effect of heat bath on

the particle and is called the friction force ( η
m

p), and the rapidly fluctuating part R(t)

which has no precise functional dependence on t. Since it depends on the instantaneous

effects of collisions of the Brownian particle with the molecules of the heat bath, R(t)

is a random(stochastic) force with its mean value zero and with a specific probability

distribution. It is further assumed[33] that R(t) has an infinitely short time correlation,

i.e. it describes a Markovian process. Therefore R(t) is completely characterized by the

following moments,

〈R(t)〉 = 0,

〈R(t)R(t′)〉 = 2Dδ(t − t′). (1.15)
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where D is the diffusion coefficient and is related to the friction coefficient η (to be

described later). It should be noted that Langevin equation is different from ordinary

differential equations as it contains a stochastic term R(t). In order to calculate physi-

cal quantities such as mean values of observables from such a stochastic equation, one

has to deal with a sufficiently large ensemble of trajectories for a true realization of the

stochastic force. The physical description of Brownian motion is therefore contained in

a large number of stochastic trajectories rather than in a single trajectory, as would be

the case for the solution of a deterministic equation of motion. The Kramers equation

or the Fokker-Planck equation is a partial differential equation which can be solved an-

alytically under simplifying assumptions whereas the Langevin equation is a stochastic

differential equation and therefore not amenable to analytic treatment. This is possibly

the reason why the Langevin approach was not used in nuclear applications for a long

time, while the Fokker-Planck equation was preferred for applications in heavy-ion colli-

sions, especially for the deep-inelastic processes. Further, the Fokker-Planck equation or

the Langevin equation are to be solved numerically for practical applications to nuclear

collective motions where more than one degree of freedom are involved and the trans-

port coefficients(friction, inertia) are coordinate dependent. Numerically, the Langevin

equation is more straightforward to handle for a number of reasons. Firstly, it is easier

to accommodate more degrees of freedom in this ordinary differential equation. On the

other hand, the Fokker-Planck equation is a partial differential equation and adding

more degrees of freedom generates a multidimensional partial differential equation, the

solution of which is very time consuming even with modern supercomputers. The mul-

tiple reduplication of the trajectory calculation(Langevin approach) is the price one has

to pay to avoid solving a partial differential equation in many degrees of freedom. Sec-

ondly, the solution of the Langevin equations by Monte-Carlo sampling of trajectories

is numerically more stable than the approximate methods available for a direct solution

of Fokker-Planck equation[48]. Moreover, the Langevin equation can be extended to

include non-Markovian processes as well [48]. It may also be mentioned that there is a

quantal version of the Langevin equation based on which a full-fledged transport theory

has been formulated in [49] within a quasi-classical approach. By virtue of its intuitive-
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ness, generality, and other practical advantages, Langevin approach is preferred to that

of Fokker-Planck and is mostly followed in the recent years.

Both the friction coefficient η and the random force R(t) arise due to coupling of the

collective dynamics with the intrinsic motion of the system. Since they have the same

microscopic origin, they are expected to be correlated. In fact in his famous analysis

of Brownian motion, Einstein showed in 1905 that the friction coefficient η and the

diffusion constant D (related to R(t) by Eq. 1.15) are related to each other. This

is intuitively understandable since both of these constants describe different aspects

of the same physical process - the exchange of momentum and energy between the

collective variable and the heat bath. The argument is universal and applies as well to

nuclear systems. It can be shown[48] that there is a relation between them called the

‘fluctuation-dissipation theorem’ which reads as follows

D = ηT (1.16)

where T is the temperature of the heat bath. This relation is also supported from

a phenomenological analysis. As time t approaches infinity, the Brownian particle is

expected to be in equilibrium with the heat bath and the average kinetic energy (for one

dimensional motion) becomes equal to T/2 (T is in units of energy). Using the Langevin

equation (1.13) for a free Brownian particle (F (t) = 0) and using the properties of the

random force given by Eq. (1.15), the average kinetic energy of the Brownian particle

is calculated as follows

〈p2〉
2m

= 2D/4η +
〈p(0)2〉

m2
e−

η
m

t. (1.17)

As t → ∞, one gets 2D/4η = T/2, which yields D = ηT . Substituting in Eq. (1.15),

one finally gets

〈R(t)R(t′)〉 = 2ηTδ(t− t′). (1.18)

The above relation connects the mean square strength of the stochastic force with

the friction coefficient. This fluctuation-dissipation theorem points out the cause-effect

relationship between the stochastic and dissipative component of the dynamics. It also

implies that any dissipation is always associated with fluctuations and vice versa.
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In the dissipative dynamical model of nuclear fission discussed previously, it is as-

sumed that the fission of hot nuclei involves two distinct time scales; one being asso-

ciated with the slow motion of the fission degrees of freedom and the other with the

rapid motion of the intrinsic degrees of freedom. The time evolution of the macro-

scopic(collective) coordinate may be viewed as the slow motion in comparison with the

agitation of the individual particles(microscopic motion) of the bath. A Markovian

Langevin approach is valid as long as a clear separation between these two time scales

is possible. However, when the collective motion is faster and hence the two time scales

become comparable, one has to generalize the Langevin equation to allow for a finite

memory and the process becomes non-Markovian[48]. For fast collective motion, the

generalized Langevin equation reads as

dp

dt
= F (t) −

∫ t

dt′η(t − t′)p(t′) + R(t) (1.19)

The friction kernel here is non local in time. This implies that the friction η have a

memory time, i.e, the friction depends on the past stages of the collective motion. It is

therefore also called a retarded friction. The time correlation of the stochastic force is

generalized accordingly and is given by the following equation.

〈R(t)R(t′)〉 = 2η(t − t′)T. (1.20)

Thus the random force does not have a white noise(vanishing correlation time) but a

colored (finite correlation time) one. The correlation property also states that there is

a memory time ǫ (also called the correlation time) within which the stochastic variable

R(t′) at time t′ influences the variable R(t) at time t. For slow collective motion the

memory effects can be neglected, the correlation time vanishes and we have a time-local

friction force. The dynamics is then said to be “δ- correlated” or Markovian. Nuclear

collective motion is studied within the framework of “linear response approach” to

examine whether it is Markovian or not[50].

Another distinguishing feature of nuclear collective dynamics from that of a Brow-

nian particle is the fact that whereas in Brownian motion, the large bath of oscillators

influences the motion of the Brownian particle, the bath itself is not affected by its

coupling to the collective motion (in particular, its temperature remains constant).
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However, this is not strictly valid for a nuclear system. In deep-inelastic collisions or

during the fission process, we assume that the bath represents the intrinsic degrees of

freedom of the nuclei. Here again, the thermal capacity(intrinsic nuclear excitation ∼
100 MeV) of the heat bath though much larger than the collective kinetic energy of

the fission degree of freedom(∼ 10 MeV), the variation in the temperature of the bath

due to energy flow from the collective mode(friction) cannot be neglected. In order

to conserve total energy, the net kinetic energy loss of the Brownian particle(fission

degrees of freedom) manifests as energy gain(rise in temperature T ) in the heat bath.

Thus the fluctuation strength coefficient D(= ηT ) which determines the strength of

the Langevin(random) force is not constant, but is continually re-adjusted as the bath

heats up. The assumption underlying this scheme is that the internal system equili-

brates quickly, i.e. its equilibration time is smaller than the correlation time ε, and also

smaller than the time scale of macroscopic collective motion. The above assumption

thus implies that the Langevin dynamics can be applied with confidence for slow collec-

tive motion of a highly excited nuclear system. This is best fulfilled in fission of highly

excited large compound nuclei. Hence we shall assume in our work Langevin equations

with a phenomenological Markovian friction term and it is understood that the tem-

perature and therefore also the fluctuation strength of the Langevin force, change with

time, but at a rate which is slow on the scale of the equilibration and the correlation

times.

1.3 Nuclear Dissipation

1.3.1 Introduction

In the early literature a brief remark is made in the famous paper of Kramers[8] to the

effect that friction might play a role in the nuclear fission rate. Strutinsky[34] mentions

friction in connection with fission when discussing solutions of Kramers equation. But

for a long time the statistical model for fission and particle evaporation developed

by Bohr and Wheeler[7] and Weisskopf[51] and developed subsequently into computer

codes by Puhlhofer[52], Blann[53] and others were sufficient to describe fission data.

Pre-scission particle multiplicities were not measured at that time. The status changed
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dramatically in the 1980s when measurements reveal enhanced neutron multiplicities as

compared to statistical model code[36, 54]. This work was accompanied by theoretical

investigations based on the Fokker-Planck equation by Grange and Weidenmüller [31,

32, 35] predicting reduced fission probabilities due to friction effects which should also

influence emission of neutrons[31, 37, 55, 56]. The increased neutron multiplicities were

further studied by different groups [57, 58, 59, 60] and values for friction coefficients were

obtained to fit experimental data[57, 59]. Experimental evidence of fission as a slow

and highly dissipative process came from the pre-scission multiplicities of neutron[40],

charged particles[61], and γ rays[30]. These experiments suggest collective motion to

be overdamped, possibly providing an answer to the question raised by Kramers as

early as 1940 in his seminal paper[8], namely, “ Is nuclear friction abnormally small or

abnormally large”. It was found that the pre-scission neutron multiplicities increase

more rapidly with bombarding energy than the statistical model predictions, no matter

how one varies the parameter of the model, i.e., the fission barrier, the level density

parameter and the spin distribution, within physically reasonable limits[62]. It was

strongly established that it was not adequate to treat fission of hot nuclei along the lines

of statistical model without dissipation. Thoennessen and Bertsch [63] studied different

systems and found the systematics of the threshold excitation energy when statistical

model starts losing its validity. This data presents to the theorist the problem of

understanding the dissipation and how it depends on excitation energy. The excess yield

of particles and γ-rays from heavy compound systems were analyzed by incorporating

the nuclear friction parameter and transient effects allowing for the build up of the fission

flux. General reviews of the experiments and also surveys on theoretical models for their

interpretation can be found in the articles of Newton[64], Hilscher and Rossner[65],

Hinde[66] and with emphasis on pre-scission giant dipole γ-emission, in the article of

Paul and Thoennessen[67].

It was thus well established that a dissipative force operates in the dynamics of a

fissioning nucleus. In the dissipative dynamical model, where induced nuclear fission is

viewed as a diffusion process of the fission degree of freedom over the fission barrier,

nuclear friction is interpreted as the average effect of the interaction of the slow col-
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lective motion with already thermalized intrinsic degrees of freedom(mostly comprising

of uncorrelated particle-hole excitations). The dynamical behavior of large-amplitude

collective motion, such as those occurring in fission and heavy ion reactions, depend

crucially upon the rate at which energy of collective motion is dissipated into internal

single particle excitation energies, as well as upon the mechanism by which the dissi-

pation proceeds. Dissipation affects the dynamical motion primarily by

(1) increasing the time required to go from one shape to another which results in en-

hancement of prescission particle emission,

(2) heating the system at the expense of collective kinetic energy which manifests in

fission fragment kinetic energy distribution,

(3) introducing fluctuations in a natural way which results in fluctuations around the

mean path in multi-dimensional deformation space which in turn introduces fluctua-

tions in different experimental observables.

Despite these effects on the nuclear dynamics, unambiguous extraction of the strength of

the nuclear friction was not possible from experimental data in the earlier years(∼ 80′s)

essentially because the experimental data were not very sensitive to the details of the

nuclear friction. However it is only recently(∼ last 10 years) that considerable progress

has been made, mainly from new experimental measurements such as prescission neu-

tron multiplicities and evaporation-residue cross-section and the choice of the range of

nuclear friction to fit data has narrowed down substantially.

Theoretical work on the detailed nature of the nuclear friction, either phenomeno-

logically or from specific microscopic models, has made considerable progress in the

recent years. In [68], a compilation of data on the magnitude of dissipation has been

presented. In [67] and [69], information on T-dependence of dissipation has been ex-

tracted from comparison with experimental findings. The microscopic structure of the

friction coefficient has been studied together with fluctuations in the collective variable

within microscopic transport theories based on random matrix approach[70, 71], the

one-body dissipation model[72, 73], and the linear response[12, 13]. From the seventies,

several attempts have been made to derive dissipation coefficient for nuclear friction

theoretically but a complete theoretical understanding of the dissipative force in fission
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dynamics is yet to be developed. The results obtained in various one-body or two-body

viscosity models differ very much in the strength and coordinate dependence and also

with respect to its dependence on the temperature. They sometimes differ by an order

of magnitude, a feature which not only reflects the complexity of the problem, but also

urges for finding the solution.

1.3.2 Probes of nuclear friction in heavy-ion induced fission

Friction in the fission process is expected to manifest itself in a number of observables as

we have discussed in the previous sub-section. Friction affects fission probability (fission

cross section/compound nucleus formation cross section) which in turn will directly

affect the pre-scission particle (particularly neutron) and γ multiplicity. Therefore, the

measurement of prefission particle and GDR γ-ray multiplicities provide suitable clocks

to probe fission time scale and nuclear dissipation. In particular, neutrons are expected

to work as a clock to measure fission time scale, because of their short life. In order to

analyze the pre-scission neutron data with the statistical model, a long ‘delay time’(≈
5 × 10−20) [29, 40] was initially introduced during which fission was suppressed. This

delay time has been interpreted as a transient time during which the fission degree of

freedom attains quasistationary distribution in phase space. This time interval depends

on the strength of the friction force. Therefore the nuclear friction coefficient can

be deduced by analyzing the prescission multiplicities using Fokker-Planck or Langevin

equation. Secondly, friction is expected to influence the distributions of the total kinetic

energy, mass and charge of the fission fragments. These distributions of fission fragments

is related to the dynamics of fission and analyzing these data one can further probe

nuclear dissipative forces.

From the theoretical side, Strumburger et al. [42] have combined a Fokker-Planck

description with rate equations and analyzed data for pre-scission light particle mul-

tiplicities. Nix and his collaborators[74, 75] introduced friction in classical equations

of motion in order to describe kinetic energies of fission fragments. Weidenmüller and

coworkers [76, 77] investigated also the effect of friction on the width of the kinetic

energy distribution. Adeev and collaborators used multi-dimensional Fokker-Planck
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equations [78, 79] in order to describe the variances of mass[80, 81], energy[82, 83] and

charge[84] distributions of the fission fragments. Work concerning the Fokker-Planck

description of fission fragment distributions is reviewed in Ref. [43].

Langevin approach was first proposed by Abe et al. [33] as an intuitive phenomeno-

logical framework to describe nuclear dissipative phenomena such as heavy-ion reactions

and fission. Fission dynamics of hot nuclei were investigated by Abe and others[48] us-

ing the two-dimensional Langevin equation including particle evaporation. Both the

calculated number of pre-scission neutrons and the average total kinetic energy of fis-

sion fragments were found to be consistent with experimental values using one-body

dissipation. Detailed studies of Langevin dynamics with a combined dynamical and

statistical model (CDSM) were made and the influence of friction on prescission neu-

tron, charged-particle and γ-multiplicities, on the energy spectra of these particles, on

fission time distributions, and on evaporation and fission cross sections were investi-

gated by Fröbrich and his collaborators [85]. Their phenomenological analysis yielded

a strong deformation dependent nuclear friction. They also concluded from their study

that evaporation residue cross section is a very sensitive probe for nuclear friction[86].

Hence more precise measurements of evaporation residue cross sections would help to

discriminate between the different versions of friction used in the analysis of fission

data. Similar conclusions were also drawn by other workers in the recent years[87].

In Ref. [88], the so called ‘long-lifetime fission component’ or LLFC was proposed as

a new probe of dynamical effects in heavy-ion induced fission and it was concluded

that measurements of LLFC for heavy systems can provide decisive information about

the strength of nuclear friction for compact configurations in fission. Giant dipole reso-

nance(GDR) γ was used as a probe to study the viscosity of saddle-to scission motion in

hot 240Cf and a measure of the saddle to scission time was extracted from the prescission

γ yield[89].

1.3.3 Origin and nature of nuclear dissipation

In theoretical models for nuclear friction, two kinds of dissipation mechanisms are gen-

erally considered: one is the wall-and-window one-body dissipation and the other is the
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hydrodynamical two-body dissipation. In the wall friction, the intrinsic motion of the

nucleons is assumed to be described by the extreme single-particle model of the nucleus

whereas its collective dynamics is described by its shape evolution. The nucleons within

the nuclear volume are assumed not to collide with themselves but they undergo colli-

sion with the moving nuclear surface(‘wall’) and thereby damps the surface motion[73].

The irreversible feature of friction comes out after suitable averaging is carried out. A

similar picture is used in the linear response theory approach to nuclear friction[12].

There the ‘wall’ is replaced by the shell model potential, the nucleons move in quantum

states and are allowed to ‘scatter’ from one another. Details of this theory can be found

in [90], together with numerical computations of the transport coefficients and their

temperature dependence on the basis of “locally harmonic approximation”. The basic

assumption here consists of the hypothesis that close to Q0, (Q is the coordinate corre-

sponding to the shape degree of freedom, Q0 can be any fixed value of the coordinate

which the system may reach) and for a small time interval δt, the actual Q(t) can be

approximately described by the ‘harmonic’ motion associated with a properly defined

osculating oscillator. This approximation implies the expansion of the Hamiltonian

Ĥ(Q) keeping terms up to second order i.e., up to (Q − Q0)
2. The condition imposed

on the time scale is τ ≪ δt ≪ τcoll,(τcoll and τ are the collective and nucleonic time

scales) which guarantees that within δt collective motion does not drive the system too

far away from Q0. The assumption is that the collective motion is sufficiently slow such

that the large scale motion can be linearized locally. The effect of the coupling term

(between the collective and intrinsic motion) which is given by (Q−Q0)
(

∂H
∂Q

)

, is treated

by the linear response theory. The response function χ̃(t) measures the response of the

system of nucleons to the coupling and the transport coefficients follow after evaluating

the moments in time of the response function by Fourier transforms. The limitation of

this procedure is that the transport coefficients should not vary too much with the col-

lective variable Q. The variation of the transport coefficients (friction η, inertia m etc)

with temperature and shape for average fission dynamics is studied using this model

of linear response theory[91]. It has been shown in [92] that the friction coefficient

obtained within linear response theory(in the zero frequency limit) becomes close to
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the one of wall friction after applying smoothing procedures in the sense of Strutinsky

method. This feature goes along very nicely with the claim that wall friction repre-

sents the macroscopic limit for a system of independent particles. The transition from

“independent particle motion to collisional dominance” in view of the linear response

approach is looked at in Ref. [93].

There are theories for which friction shows a ‘hydrodynamical’ behavior, in the sense

of being proportional to a relaxation time τintr of nucleonic motion and thus to T−2,

T being the nuclear temperature. This concept is used in the theory of “dissipative

diabatic dynamics” proposed in [21] which is based on the assumption that nuclear col-

lective motion happens predominantly diabatically and is used for the entrance phase

of a heavy ion collision. In [94], the von Neumann equation had been applied to the de-

formed shell model, complimented by a collision term in relaxation time approximation.

For the previous two models, the association to hydrodynamics is only given somewhat

loosely through the proportionality factor T−2 in the friction coefficient, or components

of it. Hydrodynamical viscosity in the proper sense of “collisional dominance” is found

whenever the nucleonic dynamics is described by transport equations like the Landau-

Vlasov equation with the collision term. There is a recent work [95], which combines

the use of such an equation with a special treatment of the surface by way of collective

variables. In [96], a model has been presented in which collective dynamics itself is

governed by two-body collisions, rather than by the picture of a time dependent mean-

field. Microscopic calculations of the diffusion coefficient[97] (assuming purely diffusive

motion up to the saddle point) and the friction constant[98] (from microscopically de-

rived Langevin equation as applied to thermally induced nuclear fission) resulted in too

strong dissipation for nuclear collective motions.

An attempt to account for both one-body and two-body mechanisms of friction was

made in Ref. [94, 99] within the so-called relaxation time approximation(RTA), in which

the time dependent mean field theory is extended by an account of the collision integral

in linear order in the deviation of the density matrix from some equilibrium distribution.

The two components of friction obtained within the relaxation time approximation show

the temperature dependence which is characteristic for one- and two-body dissipation.
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The non-diagonal component is very small for temperatures below 2 MeV; it increases

with temperature and reaches a kind of plateau at a temperature of the order of 2-4

MeV depending on the specific choice of the single-particle potential. The absolute value

in the plateau region is very close to the wall friction for a sharp edge(infinitely deep

square well) potential and a few times smaller in the case of a very diffuse (harmonic

oscillator) potential and thus is found to depend on the diffuseness of the potential. The

diagonal component is proportional to the relaxation time and in this way is similar to

the two-body viscosity. However, the proportionality factor is too large, which causes

some doubt as to whether the RTA can be applied to describe friction in the case of

large scale collective motion.

It has also been noticed that at very small temperatures, pairing correlations require

dissipation to vanish. It needs to be stressed that a small damping strength at small

temperatures may have quite drastic implications. If the dissipation strength falls below

some limit, the nature of the dissipation process would change completely. Then the

dissipation is too weak to warrant relaxation to quasiequilibrium. This not only violates

Kramers formula but also the Bohr-Wheeler formula becomes inapplicable[100]. So far

no method exists how to incorporate collective quantum effects.

The models described above encompass the whole range of assumptions one may

make for nuclear dynamics, from pure independent particle model to the ones which

are entirely governed by collisions. We should now briefly review the standard one and

two-body dissipation in terms of their comparison with experimental data.

1.3.4 One body dissipation vs. two body viscosity

The models of hydrodynamical viscosity [74] are based on the assumption that nuclear

dissipation arises from individual two body collisions of nucleons. It was further ob-

served that two-body viscosity hinders the formation of a neck in nuclear fission. This

leads to more elongated scission configuration and consequently to a smaller kinetic

energy of the fission fragments. Davies et al. [74] deduced the value 0.015 ± 0.005 TP

= 9 ± 3 × 10−24 MeVs/fm3 for the viscosity coefficient µ by analyzing the mean total

kinetic energies of fission fragments with the Newtonian equation for the mean trajec-



26

tory. It was observed that the mean kinetic energy of the fission fragments is not very

sensitive to the details of the dissipative forces and both one and two body dissipations

in classical dynamical calculations have been found to describe systematics of experi-

mental mean kinetic energies. It was however concluded from extensive experimental

data that the hydrodynamical two body viscosity cannot give consistent explanation

of both neutron multiplicity and fission fragment kinetic energy distribution. A strong

(µ = 0.20TP or larger) two-body viscosity is required to reproduce the observed neu-

tron multiplicity. However, the total kinetic energy calculated with this value of µ is

far smaller than given by the Viola systematics. A consistent explanation of neutron

multiplicities and fragment kinetic energies indeed support the one-body friction and

not the two-body viscosity[101]. Studies of macroscopic nuclear dynamics such as those

encountered in low-energy collisions between two heavy nuclei or nuclear fission have

also established that one-body dissipation is the most important mechanism for col-

lective kinetic energy damping. Gross [72] first pioneered the concept of a one body

mechanism which considered the transfer of energy from the motion of nuclear surface

to the nucleon motion as a result of frequent collisions of the nucleons with the nuclear

surface. One-body mechanism is expected to be the main process at low nuclear exci-

tation energies(temperatures up to a few MeV) because nucleon-nucleon collisions are

suppressed by the Pauli principle by limiting the phase space into which the nucleons

can scatter. When the excitation of the nucleus is not too high, the mean free path of

the nucleons is greater than the nuclear dimensions and hence two-body processes are

less favored (short mean free path assumption implicit in ordinary two body viscosity

is not valid in this energy range) compared to one-body processes in this long mean

path dominated mean field regime(independent particle model of nucleus considered).

The analogous classical system is therefore a Knudsen gas confined within a container,

rather than a short mean-free-path fluid dominated by two-body interactions. Some

estimates made about the time between two subsequent collisions of a particle with the

wall [1] gives τwall
∼= 1.6×10−22s whereas the time between two subsequent collisions of

a single particle with another particle was estimated to be 16× 10−22s ∼= 10.τwall. This

seems to favor collisions with the wall as the main process of energy dissipation. These
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theoretical arguments supported by the experimental observations led to the conclusion

that one-body dissipation is the dominant mechanism for energy dissipation in nuclear

fission when the excitation energy is not too high (much below the Fermi energy do-

main). However, two-body collisions are expected to gain more importance at higher

temperatures. The importance of one body dissipation motivated the derivation of

one-body friction by microscopic theories. The proper quantal description of one-body

dynamics is the time-dependent Hartee-Fock(TDHF) where single-particle wave func-

tions describing the nucleons evolve through a Schrodinger-like equation containing the

nuclear mean field. Despite the exact nature of the TDHF solution to one-body dynam-

ics, the need for calculational simplicity demands a macroscopic description involving

a small number of explicit degrees of freedom.

1.3.5 Wall and Window Friction

Blocki et al. [73] derived a simple expression(in a classical picture), namely, the “wall

formula”(WF) for one body dissipation. According to the formula, the rate of collective

energy dissipation is given as

ĖWF (t) = ρmv̄
∫

ṅ2dσ, (1.21)

where ṅ is the normal component of the surface velocity at the surface element dσ, while

the nuclear mass density and the average nucleon speed inside the nucleus are denoted by

ρm and v̄ respectively. The time dependent mean field nuclear potential is identified with

the ‘wall’ and the net energy dissipation from the wall(collective degree) to the nucleons

through their interaction is given by the wall friction. Typical estimates were made of

the characteristic time scale of the one-body dissipation theory resulting from balancing

typical inertial and dissipative terms in the equations of motion. It turned out to be in

the range of (0.7 − 1.3) × 10−22 sec for mass numbers between 50 and 250[73]. These

damping times are intrinsically short compared to many characteristic collective time

scales, which suggest that one-body energy dissipation may often dominate collective

nuclear dynamics.

The wall friction was also obtained from a formal theory of one body nuclear dissi-

pation which is based on classical linear response technique [102] applied to a Thomas-
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Fermi description of the nucleus and expressions for the collective kinetic energy and the

rate of energy dissipation for slow collective motion were identified. These quantities

are characterized by mass and dissipation kernels, considering the nucleus as a large sys-

tem of independent nucleons contained within a leptodermous time-independent single-

particle potential. The rate of dissipation is expressed as a double surface integral

involving the normal surface velocity at different points, coupled via a dissipation ker-

nel. This kernel is simply related to the imaginary part of the single-particle Green

function for the nuclear potential. In the large nucleus limit, these kernels were shown

to be independent of the surface-diffuseness of the single particle potential and to be

simply dependent on the nuclear temperature. For a given nuclear shape, the kernels

were expressed in terms of the classical trajectories for nucleons within the nucleus,

and are therefore sensitive functionals of the nuclear shape. In the limit of velocity

fields varying slowly over the nuclear surface, the classical one-body friction or wall

friction is obtained. It was demonstrated that these results could also be derived by

taking the stationary-phase (large nucleus) limit of an entirely quantal formulation.

The one-body mass and dissipation coefficients differed significantly from those of in-

compressible, irrotational hydrodynamics. Yamaji et al. [103], also obtained a friction

coefficient comparable with wall friction using the linear response theory. More recently,

in [104], the concept of wall friction has been reexamined by performing computer sim-

ulations to follow the particles of a gas in a container when the shape of the container

undergoes harmonic vibrations driven by an external force. Both a classical gas as well

as a quantum system having the typical nuclear dimensions have been considered. They

concluded from their study that there is a minimal collective speed above which the

wall friction is applicable.

The “window friction” was formulated which accounts for the role of nucleon ex-

change through a neck in a dinuclear system[73]. When the two halves of a nucleus

are in relative motion due to leftward and rightward drift, any particle passing through

the window will damp the motion because of the momentum transferred between the

systems. This gives rise to an effective dissipation coefficient which is termed as win-

dow friction. The wall friction in conjunction with the window friction was found to be
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quite successful in reproducing a large volume of experimental data of damped heavy

ion collisions[105], fusionDe, and fission[73, 106]. However, the damping widths of the

giant resonances calculated from the wall friction turned out be rather unsatisfactory

when compared with experimental data[107, 108].

An extensive application of the Langevin equation to study one-body friction was

made by Frobrich and Gontchar [85]. A combined dynamical and statistical model for

fission was employed in their calculations and it was first shown by them that wall

friction fails to reproduce simultaneously excitation functions for pre-scission neutron

multiplicity and fission probability. A detailed comparison of the calculated fission prob-

ability and pre-scission neutron multiplicity excitation functions led to a phenomeno-

logical shape dependent nuclear friction. The phenomenological friction turned out to

be considerably smaller than the standard wall friction value for nuclear friction for

compact shapes of the fissioning nucleus whereas a strong increase of the friction was

found to be necessary at large deformations. Earlier, Nix and Sierk[109, 110] also sug-

gested in their analysis of mean fragment kinetic energy data that the dissipation is

about 4 times weaker than that predicted by the wall-plus-window formula of one-body

dissipation. Thus the different experimental observations insisted on a reduction of

strength of the wall friction and hence its modification.

1.3.6 Modification of wall friction

The dynamics of independent particles in time-dependent cavities has been extensively

studied by Blocki and his coworkers[104, 111, 112, 113, 114, 115, 116, 117]. Considering

classical particles in vibrating cavities of various shapes, a strong correlation between

chaos in classical phase space and the efficiency of energy transfer from collective to

intrinsic motion was numerically observed[111]. It has been argued in [104, 111] that the

wall friction in its original form should be applied only for systems for which the particle

motion shows fully chaotic behavior. Hence the wall friction needs to be modified to

make it applicable for those systems which are partially chaotic. In this regard it is

thus necessary to discuss briefly the relevance of chaos to nuclear dissipation.

One of the major themes of contemporary science is the study of order to chaos
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transition in dynamical systems. Nuclear dynamics is known to exhibit chaotic features

and the most prominent one is that given by Wigner’s law for the distribution of levels

of the compound nucleus, as seen in neutron resonances[118]. Statistically significant

agreement between measured level spacing fluctuations and Wigner’s random matrix

model was established and it was concluded that the order to chaos transition from

an integrable(regular) to a chaotic system is reflected in the level spacing distribution

by a smooth transition from the Poisson distribution to the Gaussian orthogonal en-

semble(GOE) distributions. It was also conjectured that the fluctuation properties of

generic quantum systems, which in the classical limit are fully chaotic, coincide with

those of GOE. The close agreement between the GOE prediction and fluctuation proper-

ties of nuclear levels suggests that the nucleus is a chaotic system, at least at excitation

energies above several MeV. The transition from ordered to chaotic nucleonic motions

in the nuclear mean-field potential is reflected in the disappearance of shell effects in

nuclear masses and deformations, and in the transition from an elastic, through an

elastoplastic, to a dissipative behavior of the nucleus in response to shape changes[119].

In general, a nuclear system is neither fully integrable nor fully chaotic and the elat-

soplastic behavior expected in this intermediate regime was utilized in modification of

the wall friction which is valid in the fully chaotic regime.

The wall friction was originally derived for idealized systems employing a number of

simplifying assumptions such as approximating the nuclear surface by a rigid wall and

considering only adiabatic collective motions. The validity of these assumptions were

scrutinized in the framework of random-phase approximation (RPA) damping and it

was shown that in the limiting situation where the above assumptions are valid, RPA

damping coincides with the wall friction [120, 121]. It was subsequently realized that it

is possible to improve upon the dissipation rate given by the wall friction by examining

its various assumptions more critically. One of the important assumptions of the wall

friction concerns the randomization of the particle motion. It is usually assumed that

successive collisions of a nucleon with the one-body potential gives rise to a velocity

distribution which is completely random [73]. In other words, a complete mixing in the

classical phase space of the particle motion is required. This condition is satisfied for
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one-body potentials whose shapes are rather irregular. It was realized earlier [73, 122]

that any deviation from this randomization assumption would give rise to a reduced

strength of the wall friction. This happens because the energy transferred to a particle

from a time-dependent wall could be partly reversible if the motion of the particle is

not completely random.

A modification of the wall friction has been proposed recently [123] in which the full

randomization assumption is relaxed in order to make it applicable to systems in which

particle motion is not fully randomized on successive reflections. This modified version

of the wall friction is known as the “chaos-weighted wall friction”(CWWF), where

reduction in strength of the wall friction is achieved through chaos considerations. In

the present work, the modified version of the wall friction known as the chaos weighted

wall friction will be used in Langevin dynamical calculations for nuclear fission in order

to verify to what extent it can account for the experimental data.

1.4 Motivation of the work

It is now apparent from the discussion in the previous sections that a proper under-

standing of nuclear dissipation is an important topic of contemporary nuclear physics.

While the other inputs to the fission dynamics like potential, inertia can be obtained

from standard nuclear models, the strength of the dissipative force is still not an un-

ambiguously defined quantity and is often fixed empirically to fit experimental data. A

clear physical picture of friction is yet to be developed and the present work is an effort

in this direction. Both friction and random force depends on the dissipative properties

of nuclei which is hence a very important input of Langevin dynamical calculations.

The emphasis of the thesis will be on the choice of a dissipative force, based on physical

arguments, which can be used in a dynamical description of nuclear fission. A thor-

ough understanding of the mechanism of dissipation for nuclear systems as well as its

shape and temperature dependence will help in explaining the experimental data for

pre-scission particle and γ multiplicities in nuclear fission, evaporation residue cross-

section, fission fragment kinetic energy and mass distribution. An improved knowledge

of nuclear friction will also help in the search for superheavy elements. The synthesis of
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superheavy elements(SHE) by the cold or warm fusion of heavy target projectile com-

binations is a challenging problem in the recent years for both experimental as well as

theoretical physicists. The residue cross sections of SHEs depends sensitively on both fu-

sion probability as well as the survival probability of the compound nucleus. The fusion

probability in turn depends on the fusion hindrance which depends on the dissipation

of collective energy of the amalgamated system which has to overcome a conditional

saddle in order to reach the spherical shape, i.e., the compound nucleus. This problem

of overcoming a barrier under energy dissipation requires a thorough knowledge of the

nuclear friction for an appropriate dynamical description. The survival probability[124]

of the compound nucleus against fission depends on the fission probability which in

turn depends critically on the time scale of fission. Fission width or fission time scale

depends very much on the rate at which energy of collective motion gets dissipated.

Thus a proper understanding of nuclear friction is very crucial for theoretical predic-

tions of stability of SHEs against fission. The cross section of formation of radioactive

nuclei as fission fragments also depends sensitively on nuclear dissipation on the fission

path. Therefore the main motivation of the work contained in the present thesis is to

critically examine the usefulness of CWWF as a theoretical model of nuclear friction

which can reproduce experimental data without any tuning of the input parameters.

1.5 Scope of the work

The main concern of this thesis will be application of Langevin dynamics to nuclear

fission. The diffuse surface liquid drop model with Yukawa-plus exponential folding[129]

would be used to calculate the nuclear potential for the evolving nuclear shapes. Chaos

weighted wall friction (CWWF), would be used is used for nuclear friction in the

Langevin equation. The other inputs to the dynamical calculation, namely the in-

ertia, particle and γ widths, etc are taken from standard models of nuclear physics.

A special feature of the present work is that there is no free parameter in the entire

calculation. In the statistical branch , the input fission widths are the Kramers limit

whose systematics would be obtained by solving the Langevin equation in a separate

procedure. The combined dynamical plus statistical calculation would be performed for
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different nuclei ranging from high fission barrier(∼ 10 MeV) to almost vanishing fission

barrier and different observables like fission probability (Pf), prescission neutron multi-

plicity (νpre) and evaporation residue cross section (σER) obtained from the calculation

are compared with experimental data. The primary aim of this work is to verify to

what extent the chaos weighted wall friction can account for the experimental data.

The different inputs used in our dynamical model, in particular the chaos weighted

wall friction, are described in details in the next chapter. Chapter 3 sketches the steps

involved in solving the Langevin equation to calculate fission width. In chapter 4, the

combined dynamical and statistical model for fission of hot nuclei is discussed. The

results of the calculations, i.e, νpre, Pf are compared with experimental data for a

number of nuclei in the same chapter. σER is calculated from the model and compared

with experimental data in Chapter 5. The importance of transients in nuclear fission

is elaborated in Chapter 6. The last chapter summarizes the entire work, and presents

the conclusions and the future prospects of the work.



Chapter 2

Langevin Dynamics of fission:
Formulation of the model

2.1 Introduction

The dynamical time evolution of the fission process from an initially formed compound

nucleus (with a more or less compact shape) to the saddle and scission configurations

and the simultaneous emission of light particles during this deformation process consti-

tute a complex problem as we have discussed in the previous chapter. In the absence of

a complete microscopic ab initio theory of such a dynamical process, a classical descrip-

tion of the evolution of the collective coordinates is often found useful and consequently

in such descriptions, collective parameters appear (collective mass, friction and diffusion

coefficients) which depend on the collective coordinates. A classical description of the

fission dynamics of a heavy and highly excited nuclei is usually made on the ground

that the De Broglie wavelength associated with the fission degree of freedom is much

smaller than the nuclear dimensions, e.g, the ratio ∼ 0.1 for a typical kinetic energy of

10 MeV in the fission degree of freedom and for a typical compound nuclear mass of

A ∼ 200. The level density of such a compound nucleus at typical excitation energies of

a couple of tens of MeV is also extremely large thus allowing for a classical description

of its motion. It should therefore follow that the quality of a theoretical description

will depend largely on a pertinent choice of the collective coordinates and the degree

of realism of the underlying theory used to determine the collective parameters. While

modelling the dynamics of nuclear fission, the Fokker-Planck equation was initially used

34
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more frequently though the application of the Langevin equation was found to be more

convenient in the later works[48, 85]. Apart from being more intuitive and general, the

Langevin equation is easier to handle numerically and this motivated us to follow the

Langevin dynamical approach for nuclear fission in our work. In order to implement the

Langevin description for nuclear fission, it is necessary to specify the nuclear potential

energy, collective kinetic energy, and the rate of energy dissipation in terms of the nu-

clear shape and its rate of change with time. Great advances have been made in the past

to calculate the nuclear potential energy of deformation. Methods ranging from purely

macroscopic through microscopic-macroscopic to exclusively microscopic are now accu-

rate to within 1-2 MeV. In contrast to this development, not much significant progress

has been made in our understanding of nuclear dissipation. However, one of the most

important inputs to such Langevin dynamical calculations is the dissipative property of

the nucleus since it accounts for both the dissipative and the random forces acting on

the fission degrees of freedom. While the other inputs to the Langevin equation such

as the potential and inertia can be fixed from standard nuclear models, the strength of

the dissipative force is still not an unambiguously defined quantity and is often fixed

empirically in order to fit the experimental data. The emphasis of this chapter will be

on the choice of a dissipative force, based on physical arguments, which can be used in

a dynamical description of nuclear fission. However, we shall first describe the shape

parametrization of the nucleus as well as the other inputs to our dissipative dynamical

model such as potential, inertia and level density parameter in this chapter.

2.2 Nuclear shape

Fission is a multi-dimensional process, in the sense that a number of deformation degrees

of freedom can be involved. Therefore, any reasonable dynamical model would require

a number of parameters to describe the evolution of the nuclear shape. In a complete

dynamic description of the process, these parameters would appear as the generalized

coordinates. It is thus natural to resort to parameterizing the nuclear shape in terms

of a few collective variables and making assumptions about the flow of matter in the

nuclear interior. The utility of a given shape parametrization depends on how closely it
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approximates the shapes through which the real system evolves and on how conveniently

the three key quantities, namely, the potential energy, the rate of energy dissipation,

and the collective kinetic energy, can be evaluated for a given shape. For a dynamical

calculation of nuclear fission, it is normally assumed that the shape of the compound

nucleus remains axially symmetric. Different shape parameterizations have been used in

the literature which are mostly restricted to elongation, neck and the mass asymmetry

coordinates . Cassinian ovaloids [125, 126, 127], Legendre-polynomial parametrization

[101, 128], “funny hills” parametrization[129] are some of the commonly used shape

parametrizations developed in order to specify the collective coordinates for a dynamical

description of nuclear fission. It should however be noted that the computation time

increases fast with the increasing number of collective coordinates in the Langevin

equations.

In the present work we will use the well known “funny hills” parameters {c, h, α}
as suggested by Brack et al. [129] which has been found to describe fission dynamics

successfully in the past. The parameter α describes the asymmetry of the shape in the z

direction. Since we will mainly be concerned with fission of hot nuclei where symmetric

division of nuclei is the dominant mode of decay, we will consider only symmetric fission

in our calculations. Moreover, the asymmetry parameter is mainly essential to calculate

the mass and the kinetic energy distribution of the fission fragments. Since we shall be

concerned with analysis of prescission neutron multiplicity and fission probability data,

we will use α = 0 in our work. The collective coordinate c corresponds to the elongation

degree of freedom of the nucleus and is related to the dimensionless fission coordinate q,

which is half the distance between the center of masses of the future fission fragments

divided by the radius of the compound nucleus R, by the following relation,

q(c, h) = (3c/8)(1 +
2

15
(2h + (c − 1)/2)c3) (2.1)

where h corresponds to the neck degree of freedom.

The surface of a nucleus in cylindrical coordinates using the parameters c and h is

given by,
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ρ2(z) =

(

1 − z2

c2
o

)

(aoc
2
o + boz

2), bo ≥ 0, ao ≥ 0

=

(

1 − z2

c2
o

)(

aoc
2
o exp (

bocoz
2

R3
)

)

, bo < 0, ao ≥ 0 (2.2)

where z is the coordinate along the symmetry axis and ρ is the radial coordinate of

the nuclear surface. The quantities ao, bo and co are defined by means of the shape

parameters c and h as

co = cR,

bo =
c − 1

2
+ 2h. (2.3)

where R = 1.16A
1
3 , A being the mass number of the compound nucleus. ao and bo for

ao ≥ 0 are related by[130]

ao =
1

c3
− bo

5
, bo ≥ 0,

= −4

3

bo

ep +
(

1 + 1
2p

)

(
√−πp)erf(

√−p)
bo < 0 (2.4)

where p = boc
3 and erf(x) is the error function. The two definitions join smoothly for

small absolute values of bo. The volume is kept constant in the above parametrization

h

c
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Figure 2.1: Shapes of the nucleus for different values of c and h (α = 0.)

for all variations of the nuclear shape. The total length of the longer axis of the density
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distribution, in units of R, simply equals 2c. The parameter h describes the variation

of the thickness of the neck without changing the length 2c of the nucleus, and is

chosen in such a way that the h = 0 line fits approximately the bottom of the liquid

drop valley. Positive values of h implies that the neck formation starts for a lower

value of c as compared to the the case of h = 0 and hence scission of the nucleus into

two fragments also takes place for a lower value of c. Inclusion of the neck degree of

freedom is thus expected to accelerate the fission process. When bo = 0, one has a set

of oblate (ao > 1), and prolate (ao < 1) ellipsoids. When α = 0, one obtains a family

of symmetric shapes ranging from the spherical shape(ao = 1, bo = 0) to two fragment

shapes (ao < 0, bo > 0). For bo ≥ 0, ao ≤ 0, ao and bo are connected by the following

expression[130],
1

c3
= ao +

bo

5
+ (bo +

ao

5
)(−ao/bo)

3/2. (2.5)

This parametrization describes separated shapes when h ≥ ((5/2c3) − 1/4(c − 1)).

2.3 Langevin equation for fission

The Langevin equation is the equation of motion of a Brownian particle in a viscous

medium placed in an external potential field and is essentially given by the Euler-

Lagrange equation where a dissipative force and a random force are included in the

force balance equation. In the case of nuclear fission, the fission degree of freedom is

considered as the Brownian particle while the friction and random forces arise out of

the interaction of the fission degrees of freedom with the rest of the nuclear degrees of

freedom, as we have discussed in the previous chapter. The two dimensional Langevin

equation in (c, h) coordinates has the following form[101]

dpi

dt
= −pjpk

2

∂

∂qi
(m−1)jk −

∂F (qi)

∂qi
− ηij(m

−1)jkpk + gijΓj(t),

dqi

dt
= (m−1)ijpj. (2.6)

with summation from 1 to 2 (c & h) over repeated indices; qi corresponds to c & h and

pi corresponds to pc & ph. F (qi) is the free energy of the system and mij(qi) and ηij(qi)

are the shape-dependent collective inertia and dissipation tensors, respectively. The
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random force Ri(t) represents the random part of the interaction between the fission

degrees of freedom and the intrinsic degrees of freedom (considered as a thermal bath

in the present picture) and is given by the following equation [33, 48],

Ri(t) = gikΓk(t). (2.7)

The time-correlation property of Ri(t) is given the following relation,

〈Ri(t)Rj(t
′)〉 = 2Dijδ(t − t′). (2.8)

where the strength of the random force is assumed to satisfy Einstein relation (fluctuation-

dissipation theorem) which reads as follows

Dij = ηijT. (2.9)

where T is the temperature of the compound nucleus. It is assumed that [33, 48]

〈Γk(t)Γl(t
′)〉 = 2δklδ(t − t′). (2.10)

Comparing the above equations (Eqs. 2.7 to 2.10), it follows that

gikgjk = ηijT. (2.11)

The conservative force is usually specified from an appropriate nuclear model while the

friction force is treated as a phenomenological quantity. These different inputs to the

Langevin equation as chosen in our dissipative dynamical model will be described in

detail in the following sections.

2.3.1 Potential

The potential energy V (c, h) enters into our calculation through its dependence on the

deformation coordinates c and h. It could in principle be obtained from a microscopic

mean-field calculation at a finite temperature. This type of Hartee-Fock calculation

using a reasonable effective nucleon-nucleon interaction of the Skyrme type or Gogny

type at every point in the multidimensional deformation space, demands tremendous

computer time even with the most powerful computers and hence performing such a
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computation for the present purpose is not attempted. To perform the same kind of

calculation even on the level of a self consistent semiclassical approximation like the

Extended Thomas-Fermi (ETF) method [131] at finite temperature [132], which would

describe the average nuclear structure without shell oscillations, would also be far too

time consuming with advanced computers. We have therefore used a still simpler semi-

classical approach where the deformation dependent potential energy is obtained from

the finite range liquid drop model [133] with the parametrization of Myers and Swiate-

cki [134]. In the rotating liquid drop model[135], the nucleus is assumed to be formed

of an incompressible fluid with a constant charge density and a sharp surface, which

rotates as a rigid body. There are three important contributions to the deformation-

dependent potential energy in the liquid drop model: surface tension energy (arising

from saturating short range nuclear forces) which tends to minimize the surface area of

the nucleus, repulsive Coulomb energy(arising from mutual repulsion of protons) which

tends to distort or disrupt the nucleus, and rotational energy which also favours disrup-

tion because large moments of inertia are energetically favoured. The basic assumption

in the liquid drop model is that the surface thickness and the range of the force should

be much smaller than any geometrical parameter of the configuration under consid-

eration. This assumption breaks down in the highly deformed shapes of a fissioning

nucleus with small neck where the neck dimension becomes comparable to small sur-

face thickness. In these cases the finite range of the nuclear force and the diffuse surface

lead to reduction in the energy which must be taken into account[136]. The following

changes are therefore incorporated in the finite-range liquid drop model relative to the

liquid drop model, namely (1) the surface energy of the liquid drop model is replaced by

the Yukawa-plus-exponential nuclear energy, which models effects of the finite range of

the nuclear force, nuclear saturation, and the finite surface thickness of real nuclei[136];

(2) the Coulomb energy is calculated for a charge distribution with a realistic surface

diffuseness[137]; and (3) the rotational moments of inertia are calculated for rigidly

rotating nuclei with realistic surface density profiles[137]. The different contributions

of the deformation dependent potential energy in the finite range rotating liquid drop

model are described briefly as follows.
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(i) Yakawa-plus-exponential nuclear energy :

The surface energy of the liquid drop model suffers from several deficiencies in at-

tempting to describe real nuclei. The most important of these is the neglect of prox-

imity effects; that is there is an unrealistically high surface energy for strongly de-

formed shapes and an absence of attraction between separated nuclei in the liquid-drop

model[133]. One important step for obtaining an improved macroscopic nuclear energy

is the Yukawa-plus-exponential double folding potential[136]. With this technique, us-

ing one additional parameter (the range of the potential) compared to the liquid-drop

model, one can describe suitably heavy-ion scattering potentials, fusion barriers for light

and medium-mass nuclei, the lower fission barriers observed in nuclei with A ≤ 200,

and also satisfy the condition for nuclear saturation[136, 138]. The better reproduction

of the fission barriers with this Yukawa-plus-exponential potential motivated us to use

it in our calculation. The Yukawa-plus exponential nuclear energy may be written as

En = − cs

8π2r2
0a

3

∫

d3r
∫

d3r′
[

σ

a
− 2

]

e−σ/a

σ
. (2.12)

where σ = ~r−~r′, cs = as(1−κsI
2) and I ≡ (N−Z)/A is the neutron-proton asymmetry.

The integrals are over the volume of a sharp surfaced nucleus. The range a is the

one additional parameter of this modification of the liquid drop model. The value

of r0 is determined from average charge radii of nuclei found in electron-scattering

experiments, a is determined from heavy-ion scattering experiments, while the surface

energy and surface asymmetry constants as and κs are determined from fitting the

macroscopic fission barriers of nuclei with mass numbers from 109 to 252 at low angular

momentum[136, 138]. The values of the constants used here are as follows[133]:

r0 = 1.16fm,

a = 0.68fm,

as = 21.13MeV,

κs = 2.3.

(ii) Coulomb energy :

The sharp surfaced charge distribution of a nucleus is made diffuse by folding a Yukawa
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function with range ac over a liquid drop distribution, and the Coulomb energy of the

liquid drop model is modified by a Yukawa-plus-exponential function (almost similar

in form as in the case of surface energy), proportional to
∫

d3r
∫

d3r′
[

1 + σ
2ac

]

e−σ/ac

σ
.

The range parameter ac is chosen to be 0.704 fm. The diffuse surface correction lowers

the Coulomb energy since charge is spread over a greater effective volume when the

surface is made diffuse. The six dimensional integrals in Coulomb and surface energy

are reduced to three dimensional integrals by Fourier transform techniques. The axial

symmetry of the shape parametrization is also utilized effectively in simplifying these

integrals. The method used for evaluating the nuclear potential (surface and Coulomb)

is briefly described in Appendix A.

(iii) Rotational energy :

The rotational energy of a nucleus is given by ER = L2h̄2

2I
where I is the largest of the

principal-axis rigid body moments of inertia. For a matter distribution made diffuse by

folding a Yukawa function over a sharp-surfaced one, the rigid body moment of inertia is

modified by the term 4M0a
2
M , where aM is the range parameter of the folding function.

The same diffuseness parameter is used for both the charge and the matter distribution

and aM = aC = 0.704 fm[133].

The fission barriers calculated from this model of potential energy have been found

to be within 1 MeV (for the angular momentum values which are sampled in such

experiments) of those which optimally reproduce fission and evaporation-residue cross-

sections for a variety of nuclei with masses ranging from 150 to above 200[133]. Langevin

dynamical calculations of fission fragment mass distribution in fission of excited nuclei

is reported in Ref. [139] using two liquid drop models(LDM’s): the LDM with the sharp

surface of the nucleus and the finite range LDM and it is seen that the fission fragment

mass distributions and their variances calculated with finite-range LDM are in much

better agreement with experimental data.

The deformation dependent potential energy V (c) which includes contributions from

(i) surface energy (ii) Coulomb energy and (iii) rotational energy is plotted as function

of the deformation coordinate c for different values of angular momentum l as marked

in Fig. 2.2. It is seen from the figure that the fission barrier decreases with increasing
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Figure 2.2: Potential energy V (c) which includes the surface energy, Coloumb energy
and the rotational energy(as explained in the text) for different angular momentum l
(marked in the figure) in units of h̄.

values of angular momentum l and gradually vanishes for higher values of l. We have

not included any shell and pairing effects in our potential. Compound nuclei formed

with large angular momentum in heavy-ion collisions of highly excited nuclei (E∗ ∼ 100

MeV) will generally also have high internal excitation energy. For sufficiently high

internal energies, shell and pairing effects are very small and therefore can be neglected

for all practical purposes. The de-excitation of a compound nucleus by particle and

gamma emission may however lead to a daughter nucleus with a lower excitation energy

where the quantum effects like pairing correlations and shell effects start becoming

important. But at such low excitation energies, fission cross section is also very low

and also the neutron emission threshold is not reached. The nucleus predominantly

cools by photon emission in this energy regime. Since we will mainly be concerned

with prescission neutron multiplicity and fission probability, neglecting shell effects in

the fission dynamics calculation is expected not to introduce any serious error in our

calculation.
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2.3.2 Level density parameter

The level density parameter is an important input for our calculations. Fröbrich et al.

made an extensive study of different parameterizations available for this crucial quantity

and finally considered the form given by Ignatyuk et al. to be the most appropriate for

the fission process. We shall use the following level density parameter due to Ignatyuk

et al. [140] which incorporates the nuclear shell structure at low excitation energy and

goes smoothly to the liquid drop behavior at high excitation energy. In Ignatyuk’s

approach the level density parameter is itself taken as a smooth function of mass but

with an energy dependent factor which introduces the shell structure explicitly:

a(Eint) = ā(1 +
f(Eint)

Eint
δM), (2.13)

with

f(Eint) = 1 − exp(−Eint/ED)

where ā is the liquid drop level density parameter, ED determines the rate at which the

shell effects disappear at high excitations, and δM is the shell correction given by the

difference between the experimental and liquid drop masses, (δM = Mexp−MLDM ). We

shall further use the shape-dependent liquid drop level density parameter as function

of elongation coordinate c given as [141] (leaving out the curvature corrections),

ā(c) = avA + asA
2
3 Bs(c) (2.14)

The choice of the values for the parameters av, as and the dimensionless surface area Bs

by Fröbrich et al.[47] was motivated by the fact that when using a stronger deformation

dependence of the level density parameter, e.g. that of Ref. [142], it was not possible to

find a universal, i.e. for all systems, the same friction parameter η. Hence they selected

among the different possibilities the weakest coordinate dependence which is consistent

with data. Those values correspond to av = 0.073MeV −1 and as = 0.095MeV −1[140]

which we shall use in our work. The parametrization used for Bs is of the following

form[143]:

Bs = 1 + 0.4(
64

9
)(q − 0.375)2 (if q < 0.452),

= 0.983 + 0.439(q − 0.375) (if q ≥ 0.452). (2.15)
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Figure 2.3: Variation of level density parameter a with elongation c.

where q(c, h) is related to c & h by Eq. 2.1. The variation of the level density parameter

a(c) with the elongation coordinate c is shown in Fig. 2.3. The fission rates turn out to

be sensitive to the detailed coordinate dependence of the level density parameter. The

temperature of the system is also extracted using the level density parameter which in

turn dictates the emission of light particles. Thus emission rates therefore also depend

on the level density parameter.

In Ref. [144], the level-density parameter and the Helmholtz free energy are calcu-

lated using the generalized finite-range liquid drop model(LDM). The finite-range LDM

based on the Yukawa-plus-exponential potential was generalized by Krappe[145] to de-

scribe the temperature dependence of the nuclear free energy. This dependence is ob-

tained by fitting the results of the temperature-dependent Thomas-Fermi calculation[146]

with a finite-range formula. Based on these calculations, the level-density parameter

was approximated by a leptodermous-type expression. The coefficients of this expan-

sion are in good agreement with those obtained earlier by Ignatyuk et al.[140]. The

results of Langevin dynamical calculations of the mean prescission neutron multiplicity

and fission probability are practically the same for the level-density parameter calcu-

lated with Ignatyuk’s coefficients as well as the one calculated using the generalized

finite-range liquid-drop model[144]. This fact establishes the validity of our dynamical

calculations performed with Ignatyuk’s level-density parameter.
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2.3.3 Free Energy

The driving potential for a hot thermodynamic system such as the excited nuclei has

to be the free energy[24, 143, 147, 148] which can easily be seen from the following

arguments. The total energy change is given by dEtot = TdS − Kdq where Kdq is

the work done and dS is the change in entropy. Using the relation Etot = F + TS

in this formula, one obtains K = −(∂F (q, T )/∂q)T , i.e. the driving force K is the

negative gradient of the free energy F with respect to the fission coordinate q at a fixed

temperature T . Considering the nucleus as a non interacting Fermi gas, the following

expression will be used for free energy F (as function of the elongation coordinate c),

F (c, T ) = V (c) − a(c)T 2, (2.16)

where T is the temperature of the system, V (c) is the potential energy and a(c) is the

coordinate dependent level density parameter. The driving force is thus given by

K = −(∂F (c, T )/∂c)T = −dV (c)/dc + (da(c)/dc)T 2 (2.17)

i.e. it consists of the usual conservative force −dV (c)/dc plus a term which comes

from the thermodynamical properties of the fissioning nucleus, which enter via the level

density parameter a(c), whose deformation dependence is now essential. The properties

of the heat bath enter in the description via the temperature T , which is calculated

from the internal energy E∗ and the level density parameter a by the Fermi gas relation

T =
√

E∗/a. Free energy F (c) is plotted in Fig. 2.4 for three different temperatures. It

is seen from the figure that the fission barrier decreases with increasing temperature for

a fixed value of angular momentum l. The plot is repeated for three different angular

momentum l as seen from the figure. It is also seen from comparison of Figs. 2.2 and 2.4

that fission barrier in the free energy profile is lower than that in the potential energy

profile and this will have significant impact in the calculation of different observables

in fission dynamics of hot nuclei where free energy will be used to generate the driving

force.
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Figure 2.4: Free energy F (c) for three different temperatures 1 MeV(solid line), 2
MeV(dashed line) and 3 MeV(dotted line). The plot is repeated for three different
angular momentum l (marked in the figure) in units of h̄.

2.3.4 Inertia

We will make the Werner Wheeler approximation[74, 149] for incompressible irrotational

flow to calculate the collective inertia term mij . We shall follow the work of Davies. et
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al.[74] for this purpose. The total kinetic energy of the system is given as

T =
1

2
ρm

∫

v2d3r. (2.18)

We specialize here to axially symmetric shapes, for which the velocity is given in cylin-

drical coordinates by

~v = ρ̇êρ + żêz, (2.19)

where êρ and êz are unit vectors in ρ and z directions, respectively. The Werner-Wheeler

method is equivalent to assuming that ż is independent of ρ and ρ̇ depends linearly on

ρ, i.e.,ż =
∑

i Ai(z; q)q̇i and ρ̇ = ρ
P

∑

i Bi(z; q)q̇i, where q̇i are the generalized velocities

and correspond to ċ and ḣ in our case. P = P (z; q) is the value of ρ on the surface of

the shape at the position z. By virtue of the equation of continuity, the velocity field

~v for an incompressible fluid satisfies ∇ · ~v = 0 and using this relation it can be shown

that the expansion coefficients Bi and Ai are related by the equation Bi = −1
2
P ∂Ai

∂z
.

The collective kinetic energy of the system depends on the generalized velocities as

T =
1

2

∑

i,j

mij(q)q̇iq̇j , (2.20)

where q denotes the generalized coordinates that specify the shape of a system and

corresponds to c and h in our case. Substituting the expressions for ρ̇ and ż in Eq. 2.20

and comparing Eq. 2.18 with Eq. 2.20 , we obtain for the elements of the inertia tensor

the result

mij = πρm

∫ zmax

zmin

P 2(AiAj +
1

8
P 2A′

iA
′
j)dz, (2.21)

where the primes denote differentiation with respect to z. The expansion coefficients Ai

are determined from the condition that for an incompressible fluid the total(convective)

time derivative of any fluid volume must vanish. The formula for Ai(z : q) is given by

the following expression

Ai(z; q) =
1

P 2(z; q)

∂

∂q

∫ z

zmin

P 2(z′; q)dz′. (2.22)

This inertia tensor is then calculated for different values of the collective coordinate

c and h. mij has three components, namely, mcc, mhh and mch. Fig. 2.5 shows

the variation of the component mcc with elongation c. It needs mentioning that our
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Figure 2.5: Variation of inertia mcc with elongation c.

calculations will be essentially in one dimension(c coordinate), and hence we will be

concerned mainly with the component mcc, the other two being not needed for our

purpose. We shall denote mcc by m for the sake of simplicity.

2.3.5 Random force R(t)

The instantaneous random force R(t) plays a very crucial role in the Langevin descrip-

tion of nuclear fission. Though the initial collective kinetic energy of the fission degrees

of freedom may be lower than the fission barrier, as a result of receiving incessant ran-

dom kicks from the fluctuating force R(t), the fission degrees of freedom can finally

pick up enough kinetic energy to overcome the fission barrier. This random force is

modelled after that of a typical Brownian motion and is assumed to have a stochastic

nature with a Gaussian distribution whose average is zero [33]. It is further assumed

that R(t) has extremely short correlation time implying that the intrinsic nuclear dy-

namics is Markovian. Consequently the strength of the random force can be obtained

from the fluctuation-dissipation theorem and the properties of R(t) can be written as,

〈R(t)〉 = 0,

〈R(t)R(t′)〉 = 2ηTδ(t − t′). (2.23)

where η is the strength of the dissipation and T is the nuclear temperature.
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2.4 One-body dissipation

2.4.1 Wall Friction

It is already pointed out in the previous chapter that one-body dissipation is the domi-

nant mode of energy damping in nuclear fission and is considered to be more successful

in describing fission dynamics than two-body viscosity [101]. At excitation energies

per nucleon much smaller than the Fermi energy domain, the exclusion principle will

severely restrict the phase space available for two-body collisions and the one-body

mechanism is expected to dominate. Hence we shall use the one-body dissipation for

nuclear friction in the Langevin equation. The standard prescription for one-body dis-

sipation is the wall friction which has been introduced in the previous chapter in some

detail. However, for realistic applications, it was found [109, 150] that the wall fric-

tion overestimates the one body dissipation (as required to fit experimental data for

fission of hot nuclei) by an order of magnitude. In order to reproduce simultaneously

the measured prescission neutron multiplicities and the variance of the fission fragment

mass-energy distribution, the reduction coefficient(ks) of the contribution from a wall

formula has to be decreased at least by half of the one-body dissipation strength (ks ≤
0.5)[151, 152].

In the microscopic derivation of the wall friction it is seen that the energy trans-

ferred to particle motion in a dissipative process of very short duration (smaller than

the interval between successive collisions between a particle and the wall) is given by

the original wall friction. In other words, energy damping is given by wall friction

irrespective of the shape of the potential when time available for energy damping is

short compared to the time between successive collisions. When the dissipative pro-

cess lasts longer, a part of the energy transfer could be reversible and the net energy

transfer can be shown to depend on the shape of the potential. One of the important

assumptions of the wall friction concerns the randomization of the particle motion. It is

assumed[73] that successive collisions of a nucleon with the one-body potential give rise

to a velocity distribution which is completely random. This is normally satisfied for one

body potentials whose shapes are rather irregular. If the particle motion is not fully
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random, energy transferred to a particle from a time-dependent wall could be partly

reversible, resulting in a reduced strength of the wall friction. The classical wall friction

was therefore re-examined in order to distinguish between the reversible and irreversible

energy transfers. The irreversible energy transfer was identified with the true one body

dissipation. The wall friction was modified to describe the irreversible energy transfer

and the modified wall friction would be applicable to systems in which particle motion

is not fully randomized. Studies of the nature of dynamical systems [153] demonstrated

that even simple systems possess a rich phase space structure and classical dynam-

ics can be idealized for the two extreme cases of either fully regular(integrable) or fully

chaotic(nonintegrable) motions. Most of the systems of practical interest fall in between

the above limiting cases and they are ‘mixed’ systems which display both regular and

chaotic(irregular) features. Arvieu et al. [154] pointed out the importance of topology

of phase space to characterize the motion of a particle moving in a deformed potential.

Blocki et al. [111] showed a strong correlation between chaos in classical phase space

and efficiency of energy transfer from collective to intrinsic motion. It was established

by their calculations that for slow dissipative processes, wall friction is valid when the

intrinsic dynamics is fully chaotic. The wall friction was therefore modified to make it

applicable to mixed systems i.e., when mixing in phase space is partial. Following the

above line of argument, we shall describe a specific model, namely the Chaos Weighted

Wall Friction, in the following sub-section.

2.4.2 Chaos Weighted Wall Friction

Pal & Mukhopadhyay[123] introduced a measure of chaos into the classical linear re-

sponse theory for one body dissipation, developed earlier by Koonin and Randrup [122]

and a scaled version of the wall friction, namely the “chaos weighted wall friction” was

thus obtained. We shall present a brief account of this model of one-body friction here.

Following the work of Koonin and Randrup, a classical system of independent par-

ticles placed in a container with time-dependent walls is considered which is described

by Hamiltonian H0 and H1(t) respectively. Under the linear response approximations

which require the validity of a perturbative treatment and the assumption that the
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relaxation time of intrinsic motion is short in comparison with the time scale for collec-

tive motion(adiabatic approximation), the rate of energy dissipation from the collective

motion of the wall can be expressed as

Q̇ = −
∫

dr
∫

dp

(2π)3 Ḣ1(r, p; t)
∂f0(r, p)

∂H0

(
∫ ∞

0
dt′Ḣ1(R0(r, p; t′), P0(r, p, t

′); t
)

(2.24)

This equation corresponds to a physical picture in which a particle originating from a

point (r, p) in phase space contributes a dissipation rate equal to the product of the

initial impulse received Ḣ1(t) and the sum of all impulses received subsequently along

its entire (unperturbed) trajectory (R0, P0). In the above expression f0 is the single

particle phase space distribution function governed by the unperturbed Hamiltonian

H0 and the factor ∂f0/∂H0 ensures that for a Fermi-Dirac distribution only particles

near the Fermi surface contribute. It was observed that relaxation of the adiabatic

approximation to realistic collective speeds reduces the damping by 20%−30%. There-

fore the above equation shall give the leading contribution to one-body damping even

when the collective and intrinsic time scales become comparable. Considering a lepto-

dermous system in which the nuclear potential is uniform throughout the volume but

rises steeply at the surface, the above time integral can be written as a sum of the

impulses received by a particle during its successive encounters with the nuclear surface

along its unperturbed trajectory. Separating the contribution of the first impulse given

to a particle near its point of origin at t′ = 0(local part) from those arising out of the

successive reflections from other regions of the nuclear surface (nonlocal part) Koonin

and Randrup[122] obtained the energy damping rate as

Q̇ = Q̇local + Q̇nonlocal (2.25)

The nonlocal term is determined by the correlation in the velocity field sampled at

successive reflection points of a particle trajectory in the unperturbed system. This

correlation, in turn, depends on the nature of the velocity field at the cavity surface

as well as on the nature of the particle trajectory. It was found that the local and the

nonlocal parts completely cancel each other in an integrable system in which particle

trajectories are fully regular. This essentially reflects a regular distribution of the

velocity fields which results in a strong correlation when sampled at reflection points
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along a regular trajectory. It is argued that energy transfer to the particle motion

described by the regular part of the classical phase space is reversible i.e., energy gained

by a particle from the wall is eventually fed back to the wall when particle motion is

regular. An integrable system is thus completely non dissipative in this picture and wall

friction tends to the limit of zero energy loss. Noninteracting particles in a spherical

cavity constitute an example of an integrable system in which particle trajectories are

fully regular.

In the case of a non integrable system, on the other hand, where particle dynamics is

fully chaotic, the velocity fields sampled by such trajectories are expected to be highly

uncorrelated leading to a vanishing nonlocal dissipation. This in turn corresponds to

a completely irreversible energy transfer arising from the local term alone and energy

dissipation in an irregular system can thus be shown to reduce to the wall friction. Par-

ticle trajectories in cavities with octupole and higher multipole deformations follows the

full wall friction limit which confirms that the energy damping for irregular systems is

entirely determined by the local term. Considering classical particles in vibrating cavi-

ties of various shapes, it was demonstrated in[111, 112] that while the energy transfer is

much smaller than the wall friction limit in a cavity undergoing quadropule vibration, it

reaches the wall friction limit for higher multipole vibrations. Similar conclusions were

also reached [104, 114, 115, 116] when the particle motion was treated quantum me-

chanically, though the quantal energy transfers were found to be somewhat suppressed

compared to the classical ones. It was also noted that if the interaction time is too

short for any possible transfer of particle energy to the wall after the first collision, the

net energy transfer rate would be given by the local term, or, equivalently, the wall

friction, irrespective of the system being regular or chaotic.

Most of the physical systems of interest however are neither fully integrable(full

regularity) nor fully nonintegrable(complete chaos). The dynamics of such systems

display both the characteristic features of regularity and chaos in classical phase space.

The measure for the degree of chaos or nonintegrability for mixed systems is usually

defined as the relative volume of phase space that belongs to chaotic trajectories. A

trajectory is said to be regular when originating from a given point on the cavity wall
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and moving in a given direction, it closes smoothly in phase space. On the other hand,

another trajectory leaving the same point but in a different direction could be a chaotic

one which does not close in the phase space. It has already been stated that regular

trajectories contribute to zero net dissipation while the dissipation due to the chaotic

trajectories correspond to the full wall friction. The dissipation rate in mixed systems

can therefore be decomposed into following four terms,

Q̇mixed = Q̇regular
local + Q̇regular

nonlocal + Q̇chaotic
local + Q̇chaotic

nonlocal (2.26)

The first two terms on the right side represent the local and nonlocal contributions

to the dissipation due to the trajectories which are regular and they are expected to

cancel each other as noted before. The nonlocal term due to the chaotic trajectories

also vanish due to the random nature of the surface velocity components at successive

reflecting points as mentioned previously. Therefore we are left with the local term due

to the chaotic trajectories and the net dissipation rate amounts to Q̇ = Q̇chaotic
local . This

term represents the contribution of the chaotic trajectories alone and can be written as

Q̇ = µQ̇wall (2.27)

where µ is the fraction of the chaotic trajectories and Q̇wall = ρmv̄
∫

ṅ2dσ (ṅ is the

normal component of the surface velocity at the surface element dσ) represents the full

strength of the wall dissipation where all trajectories (regular + chaotic) are considered.

The details of the derivation can be found in Ref. [123].

The wall friction is thus modified by a factor µ (chaoticity) which gives the average

fraction of trajectories which are chaotic when sampling is done uniformly over the

surface. In other words, the chaoticity µ is used to express the degree of irregularity

in the dynamics of the system. This modified or scaled version of the wall friction is

known as the ”chaos-weighted wall friction”(CWWF)[123].

The CWWF coefficient ηcwwf will therefore be given as

ηcwwf = µηwf (2.28)

where ηwf is the friction coefficient as given by the original wall friction. This modified

version is applicable for any system lying between a fully regular (µ = 0, i.e., no
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dissipation) and a fully chaotic one (µ = 1, i.e, original wall friction). For mixed

systems, the dissipation rate depends on the degree of chaos in single particle motion of

the nucleons within the nuclear volume and it is thus necessary to calculate µ for such

systems. The chaoticity is a specific property of the nonintegrability of the nuclear

shape. Thus it is required to be calculated for all possible shapes of the nucleus up

to the scission configuration. In order to calculate the chaoticiy µ, it is required to

identify a classical trajectory as a regular or a chaotic one. For conservative Hamiltonian

systems, the methods which are mostly used to distinguish between regular and chaotic

trajectories are to investigate

(a) Poincare surfaces of section.

(b) Lyapunov exponents.

In our work we will use the second method to evaluate the chaoticity µ.

2.4.3 Chaoticity from Lyapunov exponent

One representative feature of a chaotic trajectory is its sensitivity to initial conditions

and the consequent exponential divergence of the neighboring trajectories. A typical

calculation for chaoticity proceeds as follows. Two chaotic trajectories (systems) having

very close initial conditions and governed by the same set of equations of evolution will

eventually fall apart very rapidly as the time progresses and will never come back close

to each other (except accidently). Here lies the unpredictability of a chaotic system,

though governed by deterministic equations and hence the name deterministic chaos in

contrast to noise which is statistical in nature. The initial distance δ0 (a measure of

difference in the initial condition) between two trajectories can diverge or converge as

δ(t) = δ0 exp(λt). (2.29)

If the value of λ is zero or negative, the trajectories converge rapidly (integrable system)

whereas positive values imply exponential divergence and chaos. For a system with

n dimensions in phase space there will be n such exponents corresponding to each

dimension. The coefficient λi (i = 1 to n) is known as the Lyapunov exponent in the
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limit when time tends to infinity and the initial distance δ0i tends to zero. Hence

λi = lim
δ0i→0

lim
t→∞

ln

(

δi(t)

δ0i(0)

)

·
(

1

t

)

. (2.30)

In order to calculate the dissipation according to the chaos weighted wall friction

(CWWF), the chaoticity µ is required for all the deformations through which the nuclear

shape evolves with time. The chaoticity for each deformation is obtained by considering

particle trajectories in a cavity with the same deformation and distinguishing between

the regular and chaotic trajectories. The chaoticity is defined as the average fraction of

chaotic trajectories by uniformly sampling the trajectories which originate from the nu-

clear surface. Hence we calculate it by considering a large number of (typically 1000 or

more) trajectories whose starting points on the nuclear surface are chosen at random.

The initial coordinates of a classical trajectory starting from the nuclear surface are

chosen by sampling a suitably defined set of random numbers such that all initial coor-

dinates follow a uniform distribution over the nuclear surface. The initial direction of

the trajectory is also chosen randomly and its Lyapunov exponent is obtained by follow-

ing the trajectory for a considerable length of time. A particle’s trajectory is specified

by giving its initial coordinates φ and θ on the nuclear surface and the components vx,

vy, vz of its velocity ~v. For a cavity, a trajectory is independent of the magnitude of the

velocity, and hence four quantities, namely θ, φ and the orientation of ~v (two angles)

are sufficient to define the initial conditions of a trajectory. The magnitude of v may

be used as a convenient unit of velocity. The method[117] of computing the Lyapunov

exponent is based on computing numerically the average rate of exponential divergence

(or convergence) of two trajectories with nearly identical conditions (differing only by

a small value greater than some predetermined noise threshold), in the limit when the

difference between the two initial conditions tends to zero and the time over which

the averaging is performed tends to infinity. In general some of the exponents may be

positive and some negative. If positive exponents are present, the largest of them will

eventually dominate the divergence between trajectories and it will control the expo-

nential instability leading to chaos. In the case of regular trajectories the exponent is

zero. The procedure consists in evolving numerically two close trajectories originally

separated in phase space by δ0, for a given short interval τ , after which the magnitude
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of their separation is scaled back to δ0. The procedure is then repeated k times. The

largest Lyapunov exponent can be found from the limiting procedure

λmax = lim
δ0→0

lim
k→∞

1

kτ

k
∑

i=1

ln
δ(τ)

δ0
. (2.31)

where δ2(τ) = dp2 + dq2 is the square of the phase space separation between two

trajectories after time τ . The result turns out to be essentially independent of the

direction in phase space of the original displacement δ0. In our case the length of the

time interval τ was chosen to be R/2v (R being the radius of the spherical system), i.e.,

τ =0.5, when time is measured in units of R/v. Each trajectory is identified either as

a regular or as a chaotic one by considering the magnitude of its Lyapunov exponent

and the nature of its variation with time. Operationally, a trajectory is deemed chaotic

if for t/t0 = 104,(t0 = R/v), λ(t) saturates to finite values and the value is greater

than 10−3. The length of duration is found to be sufficient for this decision since for

intervals longer than this time, Lyapunov exponent is found to be tending rapidly to

zero for regular trajectories. For other trajectories recognized as chaotic, it stays at

much higher and more or less steady value. With this method, a large number of

trajectories(Lyapunov exponent calculated for each trajectory by following it for the

time t/t0 = 104) is sampled for each shape of the cavity. Thus after marking and

counting the chaotic trajectories Nch (those trajectories for which λ 6= 0) out of the

total number of trajectories sampled, the measure of chaoticity µ for the deformation

determined by the ratio of chaotic trajectories to the total number (say N) of sampled

trajectories µ is given by

µ =
Nch

N
. (2.32)

The value of µ changes from 0 to 1, as the nucleus evolves from a spherical shape to a

highly deformed one.

The chaos parameter defined so far is a classically defined quantity which is cal-

culated by sampling trajectories in the classical phase space. For the corresponding

quantum system, the chaos parameter is obtained from a measure of the fluctuations of

the single particle energy spectrum. For mixed systems, it has been argued that [155]

that in the semiclassical limit a spectrum should consist of regular and irregular parts
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that are associated with the classical regular and irregular regions of phase space.

Using the values of chaoticity calculated as above, the CWWF friction was sub-

sequently found [156, 157] to describe satisfactorily the collective energy damping of

cavities containing classical particles and undergoing time dependent shape evolutions.

Thus suppression of the strength of the wall friction achieved in the CWWF suggests

that lack of full randomization(lack of chaos) in single particle motion can provide an

explanation for reduction in strength of friction for compact nuclear shapes as required

in the phenomenological friction of Ref. [85]. This motivated us to use the CWWF

for nuclear dissipation in fission dynamics which is the main aim of the present thesis.

In the present work, the chaoticity is calculated over a range of shapes from oblate to

the scission configuration (at c=2.09 where neck radius becomes zero) at small steps

of c, the elongation coordinate. Fig. 2.6 shows the calculated values of the chaoticity

which will be subsequently used to obtain the chaos-weighted wall friction. Variation of

chaoticity with elongation coordinate c is plotted, while the coordinate h corresponding

to the neck degree of freedom is chosen to be zero (h = 0). Very small values of chaotic-

ity for near-spherical shapes(c ∼ 1) implies a strong suppression of the original wall

friction for compact shapes of the compound nucleus. Chaoticity, however increases as

the shape becomes more oblate or changes towards the scission configuration.
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Figure 2.6: Variation of chaoticity with elongation c (h = 0).
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2.4.4 Window Friction and Center of mass correction to Wall
Friction

The wall friction assumes isotropic velocity distribution of particles with respect to

average drift velocity of the nucleus. In the final stages of fission, the formation of a

neck restricts the free passage of particles from one half of the system to the other and

the effect of this restriction is that particles bombarding surface elements of each part

of the system come mostly from that part and the system is characterized by a leftward

as well as a rightward drift. The relevant value of ṅ, the normal component of wall

velocity with respect to the drift velocity, for the left part of the system is no longer

the normal surface velocity with respect to bulk of the whole gas (which is at rest)

but the velocity with respect to the leftward moving part. This enforces a correction

in the normal velocity of the wall called the center-of-mass motion correction and the

normal velocity of the surface element w.r.t particles about to strike it will be (ṅ− Ḋ),

where Ḋ is the relative velocity of the part under consideration with respect to the

center-of-mass of the nucleus which is at rest[106].

The window friction is expected to be effective after a neck is formed in the nuclear

system [106]. When the two halves are in relative motion due to leftward and right-

ward drifts, any particle passing through the window will damp the motion because of

the momentum transferred between the systems. The dissipation rate due to window

formation is given by the following expression[73]

Ėwin(t) =
1

4
ρmv̄∆σ(2D‖

2 + D⊥
2), (2.33)

where Ḋ‖ and Ḋ⊥ are the components of Ḋ along and at right angles to the normal

through the window and ∆σ is the area of the window. The radius of the neck connecting

the two future fragments should be sufficiently narrow in order to enable a particle that

has crossed the window from one side to the other to remain within the other fragment

for a sufficiently long time. This is necessary to allow the particle to undergo a sufficient

number of collisions within the other side and make the energy transfer irreversible.

The window friction should be very nominal when neck formation just begins. Its

strength should increase as the neck becomes narrower, reaching its classical value
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when the neck radius becomes much smaller than the typical radii of the fragments.

Very little is known regarding the detailed nature of such a transition, i.e., at which

point to switch on the window friction. In our calculation, a transition point cwin is

defined in the elongation coordinate beyond which window friction will be switched on.

The assumption is that the compound nucleus evolves into a binary system beyond

cwin and accordingly correction terms for the motions of the centers of mass of the

two halves will be added to wall friction and the window friction will be switched

on as well for c > cwin. It is noted that while the window friction makes a positive

contribution to the wall friction for c > cwin, the center of mass motion correction

reduces the friction. These two contributions thus cancel each other to a certain extent

and hence, the resulting wall-and-window friction is not very sensitive to the choice of

the transition point. This point is explored by the following calculation. The transition

point cwin can lie anywhere between c = 1.5(where neck formation just begins) and

c = 2.08(scission point). Calculations for fission probability and prescission neutron

multiplicity were performed with different values for cwin beyond 1.5, the calculated

values were in agreement within 5%. Therefore, the values of cwin is not very critical

for our purpose. A value for cwin is chosen at the point when neck radius is half the

radius of either of the would be fragments. The value of cwin is thus halfway between

its lower and the upper limit in terms of the neck radius.

2.4.5 Friction coefficient η

We shall use the following expressions for the wall-and-window friction coefficients in

one dimension (η = ηcc)[158],

ηwf(c < cwin) = ηwall(c < cwin), (2.34)

where

ηwall(c < cwin) =
1

2
πρmv̄

∫ zmax

zmin

(

∂ρ2

∂c

)2


ρ2 +

(

1

2

∂ρ2

∂z

)2




− 1
2

dz, (2.35)

and

ηwf(c ≥ cwin) = ηwall(c ≥ cwin) + ηwin(c ≥ cwin), (2.36)
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where

ηwall(c ≥ cwin) =
1

2
πρmv̄











∫ zN

zmin

(

∂ρ2

∂c
+

∂ρ2

∂z

∂D1

∂c

)2


ρ2 +

(

1

2

∂ρ2

∂z

)2




− 1
2

dz

+
∫ zmax

zN

(

∂ρ2

∂c
+

∂ρ2

∂z

∂D2

∂c

)2


ρ2 +

(

1

2

∂ρ2

∂z

)2




− 1
2

dz











, (2.37)

and

ηwin(c ≥ cwin) =
1

2
ρmv̄

(

∂R

∂c

)2

∆σ. (2.38)

In the above equations, ρ2 is given by Eq. [?], ρm is the mass density of the nucleus, v̄

is the average nucleon speed inside the nucleus. v̄ at zero temperature is defined as

v̄

c
=

p̄

mc
=

3

4

h̄

mc
(3π2ρm)

1/3
. (2.39)

with the Fermi momentum pF = h̄kF = h̄(3π2ρm)
1/3

and ρm = 0.17fm−3 is the nuclear

matter density.

D1, D2 are the positions of the centers of mass of the two parts of the fissioning system

relative to the center of mass of the whole system. zmin and zmax are the two extreme

ends of the nuclear shape along the z axis and zN is the position of the neck plane that

divides the nucleus into two parts. In the window friction coefficient, R (=| D2 −D1 |)
is the distance between centers of mass of future fragments and ∆σ is the area of the

window between the two parts of the system.

The wall friction coefficients given by (Eqs. 2.35 and 2.37) are obtained [73] under

the assumption of a fully chaotic nucleon motion within the nuclear volume. However,

a fully chaotic motion is achieved only when the nuclear shape is extremely irregular

whereas the nucleon motion is partly chaotic in varying degrees for typical nuclear

shapes through which a nucleus evolves when it undergoes fission. We have already

argued in the preceding section that for such cases, the chaos weighted wall friction

(ηcwwf) should be employed instead of the original wall friction. Accordingly, we shall

replace Eqs. 2.35 and 2.37 by their chaos weighted versions and the chaos-weighted

wall-and-window friction (denoted henceforth by ηcwwf) is subsequently obtained as

ηcwwf(c < cwin) = µ(c)ηwall(c < cwin), (2.40)
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and

ηcwwf(c ≥ cwin) = µ(c)ηwall(c ≥ cwin) + ηwin(c ≥ cwin). (2.41)

Fig. 2.7 depicts the variation of the friction coefficient η with elongation c for both

c
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Figure 2.7: Variation of friction coefficient η with elongation c for chaos weighted wall
friction (full line) and wall friction (dashed line).

CWWF and WF. Defining a quantity β(c) = η(c)/m(c) (m corresponds to the inertia

component mcc) as the reduced friction coefficient, its dependence on the elongation

coordinate is shown in Fig. 2.8 for both the WF and CWWF for the 224Th nucleus. A

strong suppression of the original wall friction for compact shapes of the nucleus can be

immediately noticed in the CWWF. This implies that the friction is very small for near

spherical shapes (c ∼ 1), the physical picture behind which is as follows. A particle

moving in a spherical mean field represents a typical integrable system and its dynamics

is completely regular. When the boundary of the mean field is set into motion (as in

fission), the energy gained by the particle at one instant as a result of a collision with the

moving boundary is eventually fed back to the boundary motion in the course of later

collisions. An integrable system thus becomes completely nondissipative in this picture

resulting in a vanishing friction coefficient. This aspect has been investigated extensively
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Figure 2.8: Reduced one-body friction coefficient β with chaos weighted wall friction
(full line) and wall friction (dashed line) frictions. The phenomenological reduced coef-
ficient (dotted line) from Ref.[Frob3] is also shown.

on earlier occasions [122, 123] and has been found to be valid for any generic integrable

system. The reduction in the strength of the wall friction is shown in Fig. 2.8 along

with the phenomenological reduced friction obtained in Ref. [150] to fit experimental

data. The reduction in the strength of the phenomenological friction is found to be

very similar to that obtained from chaos considerations. Though the CWWF agrees

qualitatively with the phenomenological friction for c < 1.5, it is beyond its scope to

explain the steep increase of phenomenological friction for c > 1.5. We shall discuss

this point further while presenting the results in chapter 4.

The strong shape-dependence of the CWWF can have some interesting consequences.

In a dynamical description of fission, a compound nucleus spends most of its time in un-

dergoing shape oscillations in the vicinity of its ground state shape before it eventually

crosses the saddle and proceeds towards the scission point. Since the spin of a compound

nucleus formed at a small excitation (small temperature) is also small, its ground state

shape is nearly spherical and in this region the CWWF is also small. Conversely, higher

spin values are mostly populated in a highly excited compound nucleus (high tempera-

ture) making its ground state shape highly deformed and thus it experiences a stronger
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CWWF. Therefore, if one uses a shape-independent friction in a dynamical model of

fission, its strength has to increase with increasing temperature in order to give an equiv-

alent description to that provided by the temperature-independent but shape-dependent

CWWF. In fact, it was observed in Ref. [159] that a shape-dependent friction fits the

experimental data equally well to that achieved by a strong temperature-dependent fric-

tion. Since there is a physical justification for shape-dependence in nuclear friction from

chaos considerations, it is quite likely that the above strong temperature-dependence,

at least a substantial part of it, is of dynamical origin as explained in the above and

thus is an artifact arising out of using a shape-independent friction.

It must be pointed out, however, that one would expect a temperature-dependence

of nuclear friction from general considerations such as larger phase space becoming

accessible for particle-hole excitations at higher temperatures. In a microscopic model

of nuclear friction using nuclear response function, Hofmann et al. [100] have obtained

a nuclear friction which depends upon temperature as 0.6T 2 (leading term). This may

be compared with the empirical temperature-dependent term of 3T 2 which was found in

Ref. [159]. It therefore appears that only a small fraction of the empirical temperature-

dependence can be accounted for by the inherent temperature-dependence of nuclear

friction while the rest of it has a dynamical origin as we have discussed in the above. In

fact it shown in Ref. [160] that in hot rotating 240Cf where saddle to scission emission

dominates the prescission particle and γ-ray spectra, the extracted nuclear dissipation

coefficient is found to be independent of temperature and large dissipation during the

saddle to scission path provides good fit to the γ-ray spectra. Similar conclusion is

reached in Ref. [161] for 200Pb where the friction parameter is found to be smaller

inside the saddle and increases sharply outside the saddle in order to match experimental

data. In the present work, we shall not consider any empirical temperature-dependence

of the CWWF or WF in order to study solely the effects of shape-dependence. In what

follows, we shall use both the WF and CWWF in a dynamical model of fission and shall

investigate the effect of the reduction in the CWWF strength on prescission neutron

multiplicity, fission probability as well as evaporation residue cross section.



Chapter 3

Fission widths of hot nuclei using
Langevin dynamics

In this chapter, a detailed systematic study of the fission rates is made using both

chaos-weighted wall friction(CWWF) and wall friction(WF) in the Langevin equation

for different spins and temperatures of the compound nucleus. Similar studies of fission

rates using different versions of friction is not found in the literature except for the work

of Abe et al. [48, 162] where time dependent fission rates were calculated using both

the two-body viscosity and the wall friction in the Langevin equation. The aim of the

present study is two fold. First, the effect of introducing the chaos factor in nuclear

friction parameter on fission rates will be examined at different excitation energies and

spins of the compound nucleus. The effect of the choice of different scission criteria on

fission rates will also be investigated. The second one concerns a parametric represen-

tation of the numerically obtained fission width, the need for which arises as follows.

Fission width is an essential input along with particle and γ widths for a statistical

theory in the stationary branch of compound nucleus decay. Kramers [8] obtained an

analytical expression for the stationary fission width assuming a large separation be-

tween the saddle and scission points and a constant friction. Gontchar et al. [143, 150]

later derived a more general expression taking the scission point explicitly into ac-

count but still assuming a constant shape independent friction coefficient. The CWWF

however is not constant and is strongly shape dependent and hence the corresponding

stationary fission width cannot be analytically obtained. Thus it becomes necessary

to find a suitable parametrization of the numerically obtained stationary fission widths

65
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using CWWF in order to use them in the statistical regime of the compound nucleus

decay. In the next section, the procedure for calculating the fission rates by numerically

solving the Langevin equation is given. The results of our calculation will be presented

in section 3.2 while a summary of the chapter will be given in the last section.

3.1 Solving the Langevin equation to calculate fis-

sion rate

3.1.1 Inputs to the equation

We have discussed in details the Langevin equation along with the various inputs of our

model in the last chapter. The same definitions and notations will be followed hence-

forth. The shape parameters c, h as suggested by Brack et al. [129] will be taken as the

collective coordinates for the fission degree of freedom. We shall further assume in the

present work that fission would proceed along the valley of the potential landscape in

(c, h) coordinates though we shall consider the Langevin equation in elongation (c) co-

ordinate alone in order to simplify the computation. Consequently, the one-dimensional

potential V (c) in the Langevin equation will be defined as V (c) = V (c, h) at valley. The

potential V (c, h) is calculated over a grid of (c, h) values and the valley of the mini-

mum potential is located. The potential values along this valley are used in solving the

Langevin equation. Other quantities such as inertia m(c) and friction η(c) will also be

similarly defined. We shall, therefore, proceed by considering c and its conjugate mo-

mentum p as the dynamical variables for fission for our present study and the coupled

Langevin equations in one dimension will be given as

dp

dt
= −p2

2

∂

∂c

(

1

m

)

− ∂F

∂c
− ηċ + R(t),

dc

dt
=

p

m
. (3.1)

The different inputs to the Langevin dynamics, namely the shape dependent collec-

tive inertia m, the friction coefficient η, the free energy of the system F , and the random

force R(t) are described in detail in the previous chapter. The usual wall friction (WF)

as well as its modified version CWWF will both be used for the friction coefficient η
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in order to study the effect of introducing the chaos-factor in CWWF. The random

force is given by R(t) = gΓ(t), where the diffusion coefficient D(= g2) is related to the

friction coefficient η through the Einstein relation D(c) = η(c)T . In this framework the

temperature T is simply a measure of the non-collective part of the nuclear excitation

energy Eint and related to the later by the usual Fermi gas relation Eint = a(c)T 2, where

a(c) is the level density parameter of the considered nucleus at a nuclear deformation

characterized by c. The excitation energy itself is determined by the conservation of

the total energy as will be discussed afterwards.

3.1.2 Method of solving the equation

The Langevin equation [163] has been applied to many fields of physics. It was solved

on several occasions for parabolic potential wells [164, 165]. Recently there has been a

publication[166] which showed a general analytical scheme to solve multi-dimensional

Langevin equations near a saddle point. Since analytical solutions of the Langevin

equation can be derived for quadratic potentials only, it is mostly handled by numerical

simulations. The “direct simulation” method is the most commonly used method for

solving the Langevin equation. In this method, once the stochastic equation of motion

is formulated, it is straightforward to numerically simulate the process in question, us-

ing a random number generator to supply the noise. By repeating the simulation with

different sequences of random numbers, one obtains independent realizations of the pro-

cess in question, reflecting the statistical distribution of events. This method however

becomes impractical when studying rare outcomes. For instance, while computing the

cross-section for the fusion of two heavy nuclei, where the vast majority of realizations

will end with the nuclei flying apart, the number of simulations required to obtain even

a handful of fusion events may well be prohibitively large. Recently a method based

on the idea of importance sampling[167] has been developed for computing the proba-

bilities of rare events for processes described by Langevin equations. However, for our

purpose of studying fission dynamics by the Langevin equation, the direct simulation

method to solve the equation is quite applicable since fission probabilities of hot nuclei

are not too small. We shall follow [33] for the purpose.
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The Langevin equation is a stochastic differential equation, which has a rapidly

changing force in addition to the ordinary one. The random force R(t) has no well-

defined derivatives with respect to time t and hence the usual methods of solving dif-

ferential equations such as Runge-Kutta algorithm cannot be utilized for solving the

Langevin equation. Therefore it has to be integrated by direct methods. To integrate

by the iteration method the Langevin equation is rewritten as follows:

dp

dt
= H(p, c) + gΓ(t),

dc

dt
=

p

m
(3.2)

where

H(p, c) = −p2

2

∂

∂c

(

1

m

)

− ∂F

∂c
− ηċ,

g =
√

ηT (3.3)

Integrating Eq. (3.2) from t to t + τ , we have

p(t + τ) − p(t) =
∫ t+τ

t
dt′H(p(t′), c(t′)) + g

∫ t+τ

t
dt′Γ(t′)

≃ τH(p(t), c(t)) + gΓ̃1(t),

c(t + τ) − c(t) =
1

m

∫ t+τ

t
dt′p(t′)

≃ τp(t)

m
(3.4)

By repeating the same procedure n times starting at t = 0, we can obtain p(T ) and

c(T ) at time T = nτ . At each step, we need Γ̃1(t) =
∫ t+τ
t Γ(t′)dt′, which is a sum

of Gaussian random numbers, and thereby is itself a Gaussian random number. Its

average and variance can be calculated with the statistical properties of Γ(t) and they

are as follows.

〈Γ̃1(t)〉 =
∫ t+τ

t
dt′〈Γ(t′)〉 = 0

〈Γ̃1(t)
2〉 =

∫ t+τ

t
dt1

∫ t+τ

t
dt2〈Γ(t1)Γ(t2)〉 = 2τ. (3.5)

Thus we can describe Γ̃1(t) by a new Gaussian random number ω1(t), i.e.

Γ̃1(t) =
√

τω1(t), (3.6)
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where ω1(t) has the following properties (average and variance),

〈ω1〉 = 0

〈ω1
2〉 = 2. (3.7)

The method for generation of random numbers following a particular type of probability

distribution is described in Appendix B. The same method is followed here as well as

in all other cases where Monte-Carlo simulation is used in the present thesis. Eq. (3.4)

is the first order approximation in τ . In a case such as fission one has to describe the

system over a rather long period, which means one has to repeat the small steps many

times. The time step τ is restricted by the friction strength as well as the force or

the derivative of the potential. A very small time step of 0.005h̄/MeV for numerical

integration is used in the present work. The numerical stability of the results is checked

by repeating a few calculations with still smaller time steps. The solution of Langevin

equation of a free Brownian particle obtained by this method and its comparison with

the analytical solution is presented in Appendix C. The close agreement of the numer-

ical and the analytical solution confirms validity of the algorithm used in solving the

Langevin equation. The units and dimensions used for different dynamical variables in

the Langevin equation are described in details in Appendix D.

3.1.3 Initial conditions and scission criteria

Initial conditions

The initial distribution of the coordinates and momenta are assumed to be close to

equilibrium and hence the initial values of (c, p) are chosen from sampling random

numbers following the Maxwell-Boltzmann distribution. Starting with a given total

excitation energy (E∗) and angular momentum (l) of the compound nucleus, the energy

conservation in the following form,

E∗ = Eint + V (c) + p2/2m (3.8)

gives the intrinsic excitation energy Eint and the corresponding nuclear temperature

T = (Eint/a)1/2 at each step of the fission process(each integration step). The centrifu-

gal potential is included in V (c) in the above equation. Once the initial conditions are
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fixed one can integrate the system of equations of motion, i.e. Eq. (3.1) using their finite

difference version i.e., Eq. (3.4). At each time step [t, t+τ ] one draws a random number

from a gaussian distribution which defines the fluctuating force and thus generates a

trajectory in the variable c.

Scission criteria

“Scission” implies a transition from a continuous nuclear configuration (that becomes

unstable for a number of reasons) to a configuration in which the nuclear system consists

of separated shapes. The scission configuration is determined by the intersection points

of the stochastic Langevin trajectories of the fissioning system, with the scission surface

in the coordinate subspace. For an arbitrary dimensional model the crucial problem is

how to define the scission surface. In fact, at the present time there is no unambiguous

criterion of the scission condition. The condition of zero neck radius can be considered

as one (the simplest) of the scission conditions. However, this definition is unsatisfac-

tory because the description of nucleus based on liquid-drop model looses significance

when the neck radius becomes comparable with the distance between nucleons. Hence,

it is often supposed [129, 168, 169] that the scission occurs at a critical deformation

with a relatively thick neck. Physical arguments lead to determine the scission surface

as the locus of points at which the following equation is satisfied:
(

∂2V

∂h2

)

c=const

= 0 (3.9)

This means that stability against variations in the neck thickness is lost. Such a cri-

terion of scission can be called the criteria of instability of the nucleus with respect to

variations in the thickness of its neck [43, 129, 170, 171]. It should be noted that this

scission condition corresponds to the shapes of the fissioning nucleus with a finite neck

radius, with 0.3R0 on the average [129, 168, 172], where R0 is the radius of the spherical

compound nucleus and is given by 1.16A1/3, A being the mass number of the fissioning

nucleus. Another acceptable and physically sensible criterion is based on the equality

of the Coulomb repulsion and the nuclear attraction forces between future fragments.

It was shown in [75] that this scission condition leads to scission configurations for

the actinide nuclei with approximately the same neck radius equaling 0.3R0. In Ref.

[173], a probabilistic criterion is proposed for the scission of a fissile nucleus, where the
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probability is estimated by considering scission as a fluctuation. The effect of the prob-

abilistic criterion of nuclear-scission on fission-process observables, such as the moments

of the mass-energy distribution of fission fragments and prescission neutron multiplicity

is demonstrated and it is shown that the Strutinsky criterion[168], according to which

nuclear scission occurs at a finite neck radius of 0.3R0, is a good approximation to the

probabilistic scission criterion in Langevin dynamical calculations employing reduced

wall friction, with the reduction factor being less than 0.5.

These arguments led us to choose the scission criterion for our work as those config-

urations of the fissioning nucleus where the nuclear shapes have finite neck radius of

0.3R0. However, it is worthwhile to notice that results of fission dynamics of hot nuclei

obtained with this scission criterion and those with the criterion of zero neck radius do

not vary much.

3.1.4 Fission Rate

A Langevin trajectory will be considered as undergone fission if it reaches the scission

point csci (corresponding to the scission criteria defined above) in course of its time

evolution. The calculations are repeated for a large number (typically 100,000 or more)

of trajectories and the number of fission events are recorded as a function of time. At

each iteration step, we calculate the probability of the system remaining as compound

nucleus, PC.N., i.e, number of samples with c < cscis divided by the total number of

samples, and then calculate the fission rate as follows,

r(t) = − 1

PC.N.

dPC.N.

dt
(3.10)

As the rate calculated at each time step is still fluctuating, a time averaging is made

over time ∆t as

r(t) =
1

∆t

∫ t+∆t/2

t−∆t/2
r(t)dt =

1

∆t
ln(PC.N.(t − ∆t/2)/PC.N.(t + ∆t/2)) (3.11)

The fission width Γf(t) is given by h̄r(t).

The procedure described in this section to compute the fission rate is implemented

in a computer code called FISSWDTH developed by us and is used for the numerical
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calculation presented in the next section. A brief description of FISSWDTH is given in

Appendix F.

3.2 Results

A typical Langevin trajectory of 200Pb nucleus which has reached the scission point

and has ended up as a fission event is shown in Fig. 3.1 (upper panel). Another

trajectory, the kind of which is less frequent, is shown in the lower panel of the same

figure. The Langevin trajectory in this case crosses the saddle point and after spending

some time beyond the saddle point drifts back into the potential pocket again. Such

trajectories may or may not finally reach the scission point within the observation time

and corresponds to a to-and-fro motion across the saddle and essentially portrays the

stochastic nature of the dynamics. This point is further illustrated in Fig. 3.2 where

time development of the fission rates are plotted. Two different criteria are used to

define a fission event here. The filled circles correspond to fission events defined as

those trajectories reaching the scission point whereas the open circles correspond to

those crossing the saddle point. The fission rate is very small for both the cases at the

 t ( time in � / MeV )

0 20 40 60 80 100

c 
(t

)

0

1

2

t ( time in  � / MeV )

0 50 100 150 200 250

c 
(t

)

0

1

2

Figure 3.1: The upper panel shows a typical Langevin trajectory reaching the scission
point (dotted line). The lower panel shows a trajectory which returns to the potential
pocket after crossing the saddle point(dashed line).
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Figure 3.2: Time developments of fission widths for compound nuclear spins of 0 and 40
(in units of h̄) at a temperature of T = 2.6 MeV. Open circles correspond to trajectories
for which the saddle point crossing is considered as fission. Solid circles represent
trajectories which reach the scission point.

beginning when the compound nucleus is just formed and the Langevin dynamics has

just been turned on. Subsequently the fission rate grows with time and after a certain

equilibration time it reaches a stationary value which corresponds to a steady flow

across the barrier. The fission rate defined at the saddle point reaches the stationary

value earlier than that defined at the scission point. The time difference between them

gives the average time of descent from the saddle to the scission. This observation

was also made in earlier works [162]. The main purpose of the present discussion is

to investigate the role of backstreaming in the fission process. It is observed in Fig.

3.2 that the stationary fission rate at saddle point is higher than that at the scission

point. The difference between these two stationary rates can be regarded as due to

backstreaming. The backstreaming is thus small compared to the steady outward flow

though it is not negligible. This also shows that crossing the saddle point is not an

adequate criteria for fission in stochastic calculations and can lead to an overestimation

of the fission rate.

The fission rates calculated with chaos weighted wall-and- window friction is next

compared with those obtained with wall-and-window friction. The calculations were

performed for a wide range of spin and temperature of the compound nucleus. Fig. 3.3
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Figure 3.3: Time developments of fission widths calculated with chaos-weighted wall-
and-window friction(solid circles) and wall-and-window friction(open circles) frictions
for different compound nuclear spins l (in units of h̄) at a temperature of T = 1.83
MeV.

shows the fission widths at three spins of the compound nucleus 200Pb. The effect of

suppression in the chaos weighted wall friction shows up as an enhancement by about a

factor of 2 of the stationary fission rates. Similar enhancement of the stationary fission

rate calculated with chaos weighted wall-and-window friction in comparison with that

obtained with wall-and-window friction are also observed for a wide range of compound

nuclear spin and temperature. The enhancement factor (of about 2) remains almost

the same when different choices of cwin are used in the window friction.

We next systematically extracted the stationary fission widths at different tempera-

tures for a given spin of the compound nucleus. This was done by taking the average of

the fission rates in the plateau region. These fission rates are essentially the Kramers’

limit of the Langevin equation under consideration and we expect the stationary fission

widths Γf to depend upon the temperature T as Γf(l, T ) = Al exp(−bf/T ) for a given

spin (l) of the compound nucleus where bf is the height of the fission barrier in the free
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Figure 3.4: Temperature dependence of stationary fission widths calculated with chaos-
weighted wall-and-window friction (solid circles) and wall-and-window friction(open
circles) frictions for different com[pound nuclear spins l (in units of h̄). The lines are
fitted as explained in the text.

energy profile and Al is a parameter. Such a dependence of stationary fission widths

on temperature was indeed found and is shown in Fig. 3.4. The parameter Al can now

be extracted by fitting the calculated fission widths with the above expression.
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Figure 3.5: Variation of the parameter Al with compound nuclear spin l.

Subsequently we looked into the dependence of the parameter Al on l, a few typical
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plots of which are shown in Fig. 3.5. The variation of Al with the spin l is plotted both

for chaos-weighted wall friction (solid circles) and wall friction(open circles). The nature

of variation is similar for both types of friction, while the magnitudes differ almost by

a factor of 2 which is expected from the enhancement observed in the stationary fission

rates with CWWF (Fig. 3.3). Using these values of Al, one can now obtain this

parameter value for any arbitrary spin by interpolation. Even with a limited number

of calculated values, the interpolated values will be quite reliable since Al depends on l

rather weakly as can be seen in Fig. 3.5. Consequently it becomes possible to extract

the fission width of a compound nucleus of any given temperature and spin from a set

of a limited number of calculated widths. This fact will be very useful in statistical

model calculations where fission widths are required at numerous values of temperature

and spin which are encountered during evolution of a compound nucleus. Therefore in

such cases where analytical expressions for fission widths cannot be obtained, the above

systematics can generate fission widths from a limited set of calculations.
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Figure 3.6: Dependence of the equilibration time τeq(solid circles) and the fission lifetime
τf (open circles) on compound nuclear spin l.

Next we will demonstrate the importance of dynamical models at higher angular

momentum. Two time scales are of physical significance in the Langevin description

of dynamics of fission. One is the equilibration time τeq, the time required to attain a

steady flow across the barrier. The other is the stationary fission life time τf = h̄/Γf .

Fig. 3.6 shows these time intervals for different values of spin of the compound nucleus

200Pb. At very small values of spin, the fission life time τf is many times longer than

the equilibration time and one can neglect the equilibration time. This means that a



77

statistical theory for compound nuclear decay is applicable in such cases. On the other

hand, τeq and τf become comparable at higher values of the compound nuclear spin and

this corresponds to a dynamics dominated decay of the compound nucleus. Statistical

models are not meaningful in these cases and dynamical descriptions such as Langevin

equation become essential for fission of a compound nucleus. The results described in

this section is reported in Ref. [174].

Before concluding this chapter, we would like to point out that our approximation

of restricting the calculation to one-dimension is a reasonable one. This is so because it

has been found in earlier works[162] that the fission rate in two-dimensional and one-

dimensional cases differ by not more than 15% while the stationary fission rate predicted

by CWWF and WF vary by more than 100%. Moreover, we have also checked that the

prescission neutron multiplicity and fission probability change by less than 5% when

the input fission rates are changed by 15%. Therefore we estimate that the uncertainty

associated with our calculation is rather small allowing us to compare our results with

experimental data, as we shall do in the next chapter.

3.3 Summary

In the preceding sections, we have presented a systematic study of fission widths using

the Langevin equation. Among the various physical inputs required for solving the

Langevin equation, we paid particular attention to the dissipative force for which we

chose the wall-and-window one-body friction. We used a modified form of wall friction,

the chaos weighted wall friction, in our calculation. The chaos weighted wall friction

took into account the nonintegrabilty of single particle motion in the nucleus and it

resulted in a strong suppression of friction strength for near spherical shapes of the

nucleus. The fission widths calculated with chaos weighted wall friction turned out to

be about twice the widths calculated with the normal wall friction. The chaos weighted

wall friction thus enhances the fission rate substantially compared to that obtained with

normal wall friction.

We further made a parametric representation of the calculated fission widths in

terms of the temperature and spin of the compound nucleus. It was found that this
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parameterized form can be well determined from the fission widths calculated over a

grid of spin and temperature values of limited size. This fact would make it possible

to perform statistical model calculation of the decay of a highly excited compound

nucleus where the fission widths are to be determined from a dynamical model such as

the Langevin equation. When the friction form factor has a strong shape dependence as

in the chaos weighted wall friction, the corresponding fission widths cannot be obtained

in an analytic form. In such cases, the frequently required values of the fission width

in a statistical model calculation can be made economically accessible through the

parameterized representation of the fission width which has to be obtained in a separate

calculation similar to the present one. In this calculation of fission rates, we restricted

our investigations to the 200Pb nucleus as a representative example. This nucleus has

been experimentally formed at a number of excitation energies [62, 175, 176]. The

fission probability and the prescission neutron and γ multiplicity were measured in

these experiments. These quantities can be calculated in a statistical model which

requires the fission width as well as the neutron and γ emission width as inputs to

the calculation. In particular, the input fission width plays a critical role in order to

reproduce the experimentally determined prescission neutron and γ multiplicities at

high excitation energies(typically a few tens of MeV or higher) in statistical model

calculations. While the neutron and γ widths can be obtained from standard Weisskopf

formula [85], a dynamical theory is required to calculate the fission width of the hot

compound nucleus. The work reported in this chapter is a step in this direction and the

application of these parametrized fission widths (described in this chapter) in dynamical

calculations to reproduce experimental data is reported in the next chapter.



Chapter 4

Prescission neutron multiplicity and
fission probability from Langevin
dynamics of nuclear fission

The Langevin equation has been used extensively in the recent years [48, 85, 152, 177]

in order to explain the prescission neutron multiplicity and fission probability of highly

excited (typically a few tens of MeV and above) compound nuclei formed in heavy-ion

induced fusion reactions. It was shown by Fröbrich and his coworkers[150] that the wall

friction cannot reproduce simultaneously experimental data for excitation functions of

prescission neutron multiplicity and fission probability. It was found that different

values of the reduced friction parameter β (= η/m) ranging from β = 3 × 1021s−1 to

β = 20× 1021s−1 was required to fit experimental data for different systems(compound

nucleus). This is not a satisfactory situation because it is essential that a physically

meaningful reduced friction coefficient β should be a universal parameter for different

systems. This realization led to introduce shape dependence in the friction coefficient

and this shape dependent empirical friction parameter of Fröbrich successfully explained

experimental data for different systems for prescission neutron multiplicity and fission

probability simultaneously [150]. The application of the wall-plus-window dissipation to

detailed and systematic analysis of the data from fusion-fission reactions have resulted in

deduction of the value of ks (coefficient which reduces the magnitude of wall friction) for

light as well as heavy fissioning systems[179]. The conclusions reached are as follows: (i)

ks =0.5 for lighter fissioning systems, (ii) ks = 0.1 − 0.2 for the heaviest ones in order

to get a good fit of the parameters of the fission fragment mass energy distribution,

79
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and (iii) a good quantitative description of the prescission neutron multiplicities and

angular anisotropy could be achieved for heavier systems for ks = 0.5 − 1.0. This was

an indication that the factor ks by which the wall friction needs to be reduced might

depend on the collective coordinate and excitation energy. Shape dependent nuclear

friction coefficient is also extracted in Ref. [160, 161] in order to match giant dipole

resonance γ-ray spectra. It has already been mentioned that an empirical suppression

in the wall friction coefficient similar to the one demanded by the experimental data is

achieved in the chaos weighted wall friction(CWWF) microscopically, based on physical

arguments. In the previous chapter, the fission widths have been calculated using the

CWWF in Langevin dynamics and are found to be less by a factor of 2 from those

calculated by the standard wall friction. This reduction in fission width is expected

to influence the fission probability and prescisssion neutron multiplicity favourably and

this encouraged us to do a full dynamical calculation coupled with particle evaporation.

The main motivation of the work presented in this chapter is to verify to what extent

the chaos-weighted wall friction can account for the experimental prescission neutron

multiplicity and fission probability data.

The Langevin equation will be solved by coupling it with neutron and γ evaporation

at each step of its time evolution. Following the work of Fröbrich et al. [178], a combined

dynamical and statistical model will be used for our calculation in which a switching

over to a statistical model description will be made when the fission process reaches the

stationary regime. The prescission neutron multiplicity and fission probability will be

obtained by sampling over a large number of Langevin trajectories. We shall perform

calculations at a number of excitation energies for each of the compound nuclei 178W,

188Pt,200Pb,213Fr, 224Th, and 251Es. A detailed comparison of the calculated values

with the experimental data will be presented. We have mainly considered heavier mass

nuclei (A ≥ 150) since for the lighter mass nuclei, fission width is much less than the

corresponding neutron widths and hence the prescission neutron multiplicities in those

cases are not sensitive to the choice of nuclear friction. It is for the heavier mass nuclei

that the neutron and fission widths become comparable and their competition strongly

dictates the final observables.
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It is worthwhile here to point out a special feature of the present work. We do not

have any adjustable parameter in our entire calculation. All the input parameters except

the friction coefficients are fixed by standard nuclear models. The chaos weighted wall

friction(CWWF) which is used for the nuclear friction coefficient is obtained following

a specific procedure [123] which explicitly considers particle dynamics in phase space in

order to calculate the chaoticity factor µ. There is no free parameter in this calculation

of friction. In fact, our main aim in this work is to calculate observable quantities

using the theoretically predicted friction and compare them with experimental values

in order to draw conclusions regarding the validity of the theoretical model of nuclear

friction. As it would turn out, our calculation would not only confirm the theoretical

model of CWWF, it would also provide physical justification for the empirical values of

friction used in other works [150, 160]. The present work is thus expected to contribute

significantly to our understanding of the dissipative mechanism in nuclear fission.

The different steps of the combined dynamical and statistical model calculation will

be briefly described in the next section. The calculated prescission neutron multiplicities

and fission probabilities will be compared with the experimental values in sec. 4.2. A

summary of the results will be presented in the last section.

4.1 Combined dynamical and statistical model

4.1.1 Introduction

After the formation of a fully equilibrated compound system in a heavy-ion fusion re-

action, the decay of the compound nucleus can follow two different routes. On the

first route the nucleus undergoes fission, i.e, it predominantly separates into two heavy

fragments (binary fission) which is called a fusion-fission process. During fission the in-

termediate system evaporates light particles (n, p, α) and γ-quanta until scission when

the neck radius is shrinking to zero. These are called prescission particles. After scis-

sion the heavy fragments are still excited and continue to evaporate light particles and

γ-quanta. These are called post scission particles. It is possible to distinguish exper-

imentally between pre- and post-scission particles. Along the second decay route the

nucleus does not undergo fission and the excitation of the compound nucleus is removed
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solely by the evaporation of light particles and γ-rays. The evaporation of light parti-

cles of a particular kind stops when the excitation energy has dropped to a value below

the corresponding binding energy. The deexcitation of the system thus ends with the

formation of the so-called evaporation residues. For γ-quanta the emission process lasts

until zero excitation energy and the lowest possible spin value are reached. During

the formation process of the compound system, some light particles can be emitted,

which are of increasing importance with increasing bombarding energy. These par-

ticles are called pre-equilibrium particles and since our dynamical model starts from

the formation of a equilibrated compound nucleus, we do not take into account these

pre-equilibrium particles and hence the experimental data should to be accordingly cor-

rected for these pre-equilibrium emission before any comparison is to be made. Another

possibility which may happen is that the intermediate complex formed in the collision

is not a fully equilibrated compound system and the process is called fast-fission or

quasi-fission process. In our model we always assume that an equilibrated compound

system is formed and hence we will not deal with fast fission or quasi-fission processes.

4.1.2 Initial conditions

In our calculation, we first specify the entrance channel through which a compound

nucleus is formed. In the reaction process, the compound nucleus can be formed with

different values of the angular momentum. For starting a trajectory, an orbital an-

gular momentum value (l) is sampled from a fusion spin distribution as the proper

weight function. This spin distribution is usually calculated with the surface friction

model[180]. This calculation also fixes the fusion cross section thus guaranteeing the

correct normalization of the fission and the evaporation residue cross sections within

the accuracy of the surface friction model. Assuming complete fusion of the target with

the projectile, and if both the nuclei are assumed to be spherical, the spin distribution

of the compound nucleus calculated with the surface friction model is usually found to

follow the following analytical form,

dσ(l)

dl
=

π

k2

(2l + 1)

1 + exp (l−lc)
δl

(4.1)
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where k is the wavenumber of the relative motion. This is used as the angular momen-

tum weight function with which the Langevin calculations for fission are started. The

situation is more complicated if one or both initial nuclei are deformed. In principle

one should then consider all possible relative orientations of the nuclei and follow their

relative trajectories from an infinite distance up to fusion. We will avoid such cumber-

some calculations and restrict ourselves to the simplified procedure by assuming that

both target and projectile are spherical in shape. The parameters lc and δl should be

obtained by fitting the experimental fusion cross sections. It is however found that these

parameters for different systems as calculated by the surface friction model, follow an

approximate scaling [85] and hence it is not necessary to perform new surface friction

model calculations for the spin distributions of each system. We shall, therefore, use

the scaled values of these parameters. The quantity lc scales as

lc =
√

AP × AT /ACN × (AP
1/3 + AT

1/3) × (0.33 + 0.205 ×
√

Ecm − Vc), (4.2)

when 0 < Ecm − Vc < 120MeV ; and when Ecm − Vc > 120MeV , the term in the last

brackets is put equal to 2.5. Ecm is the center of mass energy while Vc is the Coulomb

barrier. For Vc, a simple Coulomb ansatz is used which is given by the following relation,

Vc = (5/3) × c3 × ZP ZT /(AP
1/3 + AT

1/3 + 1.6) (4.3)

with c3 = 0.7053MeV . The diffuseness δl is found to scale as

δl = (AP AT )3/2 × 10−5 × [1.5 + 0.02 × (Ecm − Vc − 10)] for Ecm > Vc + 10,

= (AP AT )3/2 × 10−5 × [1.5 − 0.04 × (Ecm − Vc − 10)] for Ecm < Vc + 10.(4.4)

The initial spin of the compound nucleus will be obtained by sampling the above spin

distribution function.

The Langevin equation and the different inputs for the Langevin dynamics is de-

scribed in chapter 2. In order to integrate the Langevin equations, we need to fix the

initial conditions from which the evolution of the compound system starts. It is also

assumed that a fully equilibrated compound nucleus is formed at a certain instant and

this point of time is fixed as the origin of our dynamical trajectory calculation. The
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initial distribution of the coordinates and momenta (c0, p0) is assumed to be close to

equilibrium and hence their initial values are chosen from sampling random numbers

following the Maxwell-Boltzmann distribution. The energy available in the center-of-

mass frame Ecm can be obtained from the beam energy of the projectile and the target

and projectile mass. The excitation energy (E∗) of the compound nucleus is obtained

from Ecm in the following manner.

E∗ = Ecm − Qfus

Qfus = ∆CN − (∆target + ∆projectile). (4.5)

where Qfus is the Q-value of the fusion reaction which forms the compound nucleus(CN),

and ∆ is the mass defect of the respective nuclei. The target and projectile being in

their ground states, shell corrections are to be incorporated to get the proper mass

defects[181]. The compound nucleus however is formed in an excited state where shell

corrections are expected to disappear and hence not included in the mass defect of the

compound nucleus. The mass defect of the hot compound nuclei is taken from Ref.

[182]. The total energy conservation of the following form,

E∗ = Eint + V (c) + p2/2m (4.6)

gives the intrinsic excitation energy Eint and the corresponding nuclear temperature

T = (Eint/a)1/2 at each time step of integration. The centrifugal potential is included

in the potential energy V (c) in the above equation.

4.1.3 Particle emission

The process of light particle emission from a compound nucleus is governed by the

emission rate Γα
ν at which a particle of type ν (neutrons, protons and α-particles) is

emitted at an energy in the range [eα − 1
2
∆eα, eα + 1

2
∆eα] before the compound nucleus

eventually undergoes fission. Several theoretical approaches have been proposed in

order to describe the emission from a deformed, highly excited and rotating nucleus[42,

177, 183, 184, 185].

According to Weisskopf’s conventional evaporation theory [51], the partial decay
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width for emission of a light particle of type ν is given by

Γν = (2sν+1)
mν

π2h̄2ρc(Eint)

∫ Eint−Bν−∆Erot

0
dενρR(Eint−Bν−∆Erot−εν)ενσinv(εν) (4.7)

where sν is the spin of the emitted particle ν, mν is the reduced mass with respect to

the residual nucleus. Eint is the intrinsic excitation energy of the parent nucleus, Bν is

the binding energy of the emitted particle calculated by the liquid drop model [134], εν

is the energy of the emitted particle and ∆Erot is the change of the rotational energy

due to the angular momentum carried away by the rotating particle. The procedure

for calculation of the binding energy Bν of the emitted particle is given in Appendix

E. The level densities of the compound and residual nuclei are denoted by ρc(Eint) and

ρR(Eint − Bν − ∆Erot − εν) and is given by the following formula for the level density

of a nucleus[147],

ρ(Eint, A, I) = (2I + 1)

[

h̄2

2J0

]3/2 √
a

12

exp(2
√

aEint)

E2
int

(4.8)

where J0 is the moment of inertia and I is the angular momentum of the rotating

system. The level density parameter for particle emission is taken to be deformation

independent and is given by a = A/10MeV −1. The inverse cross sections are given by

Ref. [53],

σinv(εν) = πR2
ν(1 − Vν/εν) (for εν > Vν)

= 0 (for εν < Vν) (4.9)

with

Rν = 1.21[(A − Aν)
1/3 + A1/3

ν ] + (3.4/ε1/2
ν )δν,n, (4.10)

where Aν is the mass number of the emitted particle ν (≡ n, p, d, α). The Coulomb

barrier is zero for neutron whereas for the charged particles the barrier is given by

Vν = [(Z − Zν)ZνKν ]/(Rν + 1.6) (4.11)

with Kν = 1.32 for α and deuteron and 1.15 for proton. For the emission of giant dipole

γ-quanta we take the formula given by Lynn[186]

Γγ =
3

ρc(E∗)

∫ Eint−∆Erot

0
dερR(Eint − ∆Erot − ε)f(ε) (4.12)
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with

f(ε) =
4

3π

1 + κ

mc2

e2

h̄c

NZ

A

ΓGε4

(ΓGε)2 + (ε2 − E2
G)2

(4.13)

with κ = 0.75, and EG and ΓG are the position and width of the giant dipole resonance.

Fig. 4.1 shows the plot of comparison of neutron, gamma and fission widths plotted on

a logarithmical scale as function of T−1 for three different values of angular momentum

l. The fission width (Γf) shown here is calculated by following the procedure described

in chapter 3 using CWWF. The competition between neutron and fission width is the

main determining factor in deciding the fate of the compound nucleus. At low angular

momentum, fission width Γf is much less than the neutron width Γn but with rise of

angular momentum the two widths become comparable. These widths depend upon

the temperature, spin and the mass number of the compound nucleus and hence are to

be evaluated at each interval of time evolution of the fissioning nucleus.

1.e-5

1.e-4

1.e-3

1.e-2

1.e-1
l = 0

1.e-5

1.e-4

1.e-3

1.e-2

1.e-1 l = 40

T-1  [MeV]-1
0.5 0.6 0.7 0.8 0.9

1.e-5

1.e-4

1.e-3

1.e-2

1.e-1 l = 60

ΓΓ  
(M

eV
)

ΓΓn

ΓΓf

ΓΓγγ

ΓΓnΓΓn

ΓΓγγ

ΓΓn

ΓΓf

ΓΓγγ

ΓΓn

ΓΓf

ΓΓγγ

Figure 4.1: Comparison of neutron(Γn), gamma(Γγ) and fission (Γf)widths plotted as
function of T−1 for three different angular momentum l.
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Once the emission widths are known, it is required to establish the emission algo-

rithm which decides at each time step, [t, t+τ ] along each of the trajectories, whether a

particle is being emitted from the compound nucleus. This is done by first calculating

the ratio x = τ/τtot where τtot = h̄/Γtot, Γtot =
∑

ν Γν and ν = n, p, α, γ. The probability

for emitting any light particle or γ is given, for a small enough time step τ , by

P (τ) = 1 − e−τ/τtot ≈ x. (4.14)

We shall then choose a random number r1 by sampling from a uniformly distributed set

between 0 and 1. If we find r1 < x, it will be interpreted as emission of either a light

particle or a γ during that interval. If the time step τ is chosen sufficiently small, the

probability of emitting a particle will be small. In this way we guarantee that in each

time interval at most one particle is emitted and we avoid to consider the emission of

more than one particle in each time interval. In the case that a particle is emitted, the

type of the emitted particle is next decided by a Monte Carlo selection with the weights

Γν/Γtot (partial widths). This procedure simulates the law of radioactive decay for the

emitted particles. The energy of the emitted particle is then obtained by another Monte

Carlo sampling of its energy spectrum by choosing another random number following a

probability distribution given by the energy distribution laws in Eqs. 4.7 & 4.12. The

intrinsic excitation energy, mass and spin of the compound nucleus are recalculated

after each emission and also the potential energy landscape of the parent nucleus is

replaced by that of the daughter nucleus. The spin of the compound nucleus is reduced

only in an approximate way by assuming that each neutron, proton or a γ carries away

1h̄ while the α particle carries away 2h̄ of angular momentum. It is assumed that the

deformation of the nucleus is not changed due to particle emission. It is evident that

each emission of a light particle carries away excitation energy and angular momentum

and thereby increases the height of the fission barrier of the residual nucleus which, in

turn, renders the fission event less and less probable.

4.1.4 Dynamical model

For each choice of the initial conditions, one generates a separate trajectory which

is followed in time dynamically by solving the Langevin equation numerically. The
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procedure of numerical integration of the Langevin equation which is described in details

in the previous chapter is followed here. We will assume in the present work that fission

would proceed along the valley of the potential landscape in (c, h) coordinates, though

we shall consider the one dimensional Langevin equation in elongation coordinate c

alone in order to simplify the computation. This approximation is good enough for the

analysis of prescission particle multiplicities and fission probability. The emission of a

particle (neutron, proton or α) or a photon and the nature of emission is checked at

each time interval. Emitted particles and their energies are registered along a trajectory.

Each Langevin trajectory can either lead to fission if it overcomes the fission barrier and

reaches the scission point (csci is defined in sec. 3.1.3 of the previous chapter) in course

of its time evolution. Alternately it will be counted as an evaporation residue event if the

intrinsic excitation energy becomes smaller than the fission barrier (Bf) and the binding

energies of neutron (Bn), proton (Bp) and alpha (Bα), i.e., Eint < min(Bf , Bn, Bp, Bα).

The calculation proceeds until the compound nucleus undergoes fission or ends up as an

evaporation residue. The above scheme can however take an extremely long computer

time particularly for those compound nuclei whose fission probability is small. We

shall therefore follow a combined dynamical and statistical model, first proposed by

Mavlitov et al. [178], in the present calculation. In this model, we shall first follow the

time evolution of a compound nucleus according to the Langevin equations as described

above for a sufficiently long period denoted by τeq (τeq is taken as 300MeV/h̄ in our

model) during which a steady flow across the fission barrier is established. Beyond

this period, a statistical model for compound nucleus decay is expected to be a equally

valid and more economical in terms of computation. We shall therefore switch over to

a statistical model description after the fission process reaches the stationary regime if

the compound nucleus does not reach the scission configuration within the time τeq.

4.1.5 Statistical model

When entering the statistical branch we calculate the decay widths Γν for particle

emission in the same way as described before. We shall, however, require the fission

width along with the particle and γ widths in the statistical branch of the calculation.
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This fission width should be the stationary limit of the fission rate as determined by

the Langevin equation. Though analytic solutions for fission rates can be obtained

in special cases [8, 32, 143] assuming a constant friction, this is not the case with

the chaos-weighted wall friction(CWWF) which is not constant and is strongly shape

dependent. The fission widths for such shape dependent friction can only be calculated

by solving the Langevin equation numerically as described in the previous chapter. Thus

it becomes necessary to find a suitable parametric form of the numerically obtained

stationary fission widths using the CWWF (and also WF) in order to use them in the

statistical branch of our calculation. The details of this procedure is given in chapter 3

and also in Ref. [174], following which we shall calculate all the required fission widths

for the present work.

Once the fission widths are known, we use a standard Monte Carlo cascade procedure

where the kind of decay at each time step is selected with the weights Γi/Γtot with

(i = fission, n, p, α, γ) and Γtot =
∑

i Γi. This procedure allows for multiple emissions

of light particles and higher chance fission. The time step τ is redefined after each step in

the statistical branch as τ = τdecay/10000, where τdecay = h̄/Γtot. This procedure ensures

economy in terms of computation time. The Monte-Carlo procedure chooses the fission

route at a certain interval and the trajectory is then counted as a fission event. If the

Monte-Carlo procedure does not select the fission channel at a certain interval but selects

a particle/γ emission, we again recalculate the intrinsic energy and angular momentum,

and continue the cascade until the intrinsic energy is Eint < min (Bn, Bp, Bα, Bf). In

this case we count the event as evaporation residue event. The combined dynamical plus

statistical calculation is implemented in the fortran code “DYSTNF” (developed as part

of the thesis work) which is described in Appendix F. The flow chart of the calculation

procedure of this combined dynamical plus statistical model which describes the logical

sequence of the actual calculations is described schematically in Appendix G.

4.1.6 Calculation

Following the above procedure, the number of emitted neutrons, protons, alphas and

photons is recorded for each fission event. This calculation is repeated for a large
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number of Langevin trajectories followed by the statistical model and the average num-

ber of neutrons emitted in the fission events will give the required prescission neutron

multiplicity. The prescission neutron multiplicity is then given by

〈νpre〉 =
Nν

Nfiss

(4.15)

where Nν is the total number of neutrons emitted for those events which have ended

in fission and Nfiss is the total number of fission events. The fission probability will be

obtained as the fraction of the trajectories which have undergone fission. The fission

cross section is given by the product of fission probability (pf =
Nfiss

Nfus
) and the fusion

cross section (σfus), i.e.,

σfiss = σfus ·
Nfiss

Nfus

(4.16)

where Nfus is the total number of fused trajectories with which we have repeated the

whole calculation.

4.2 Results

We have calculated the prescission neutron multiplicity (〈νpre〉) and the fission probabil-

ity for a number of compound nuclei formed in heavy-ion induced fusion reactions. We

have used both the chaos-weighted wall friction(CWWF) and wall friction(WF) in our

calculation. Fig. 4.2 shows the results for prescission neutron multiplicity along with

the experimental data. A number of systematic features can be observed from these

results. First, the 〈νpre〉 values calculated with the CWWF and WF are very close at

smaller excitation energies, though at higher excitation energies, the WF predictions

are larger than those obtained with the CWWF. This aspect is present in the decay of

all the compound nuclei which we consider here and can be qualitatively understood as

follows. The magnitude of the CWWF being smaller than that of the WF, fission rate

with the CWWF is higher than that obtained with the WF. It has been shown in the

previous chapter that the stationary fission width with the CWWF is about twice of

that with the WF [174]. However at a low excitation energy where a compound nucleus

is formed with a low value of spin, the fission barrier is high and fission widths calcu-

lated with both CWWF and WF turn out to be many times smaller than the neutron
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width. This can be seen from Fig. 4.1, where the fission width Γf is calculated using

CWWF. The particle multiplicities is decided by the ratio of particle width Γp and the

total width (Γf + Γp). At lower energies, the fission width Γf being much less than

the particle width Γp, the particle multiplicity is practically independent of the fission

width and hence is insensitive to the particular type (WF or CWWF) of nuclear friction
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used in calculation of the fission width. The neutrons, therefore, have enough time to

be emitted long before a compound nucleus undergoes fission irrespective of its dynam-

ics being controlled by either the CWWF or the WF. This explains the observation of

〈νpre〉 values calculated with CWWF and WF being close at lower excitation energies.

Thus the prescission neutron multiplicities are rather insensitive to fission time scales

at lower excitation energies. On the other hand, a compound nucleus is formed with

a larger spin at higher excitation energies resulting in a reduction of the fission barrier

and hence an increase in the fission width. The fission time scales and the neutron life-

times start becoming comparable at higher excitation energies (refer Fig. 4.1), and the

dependence of 〈νpre〉 on fission width becomes sensitive. The fission width calculated

with CWWF being about twice than that with WF, time available for evaporation of

the neutrons is much less for the former type of friction and hence less neutrons are

predicted from calculations with the CWWF than those with the WF. The prescission

neutron multiplicity thus becomes capable of discriminating between different models

of nuclear friction at higher excitation energies of the compound nucleus.

A similar explanation also holds for the systematic variation of the calculated prescis-

sion neutron multiplicities with respect to the mass number of the compound nucleus.

We find that the WF prediction for prescission neutrons starts getting distinct from that

of the CWWF at smaller values of the excitation energy with increasing mass number

of the compound nucleus. Since the fission barrier decreases with the increasing mass

of a compound nucleus, the fission time scales and the neutron lifetimes become compa-

rable for heavier compound nuclei at lower excitation energies. This results in a fewer

neutrons from calculations with the CWWF than those with the WF as one considers

heavier compound nuclei.

A number of interesting points can be noted while comparing the calculated values

with the experimental data. For the compound nucleus 178W, the available experimental

points [62] are at low excitation energies and therefore, cannot distinguish between

the calculated values using the CWWF and WF, which are almost identical. The

calculated values slightly overestimate the prescission neutron multiplicity compared

to the experimental data. A more extensive set of experimental values for prescission
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neutron multiplicity are available for the compound nuclei 188Pt, 200Pb, 213Fr and 224Th

[62, 187, 188] covering a wider range of excitation energy in which the calculated values

with the CWWF and WF differ. Clearly, the CWWF predicted values give excellent

agreement with the experimental data for these compound nuclei whereas the WF

predictions are considerably higher. However, similar conclusions cannot be drawn

for the heavier nucleus 251Es. It appears that the WF predictions are closer to the

experimental data [29, 62, 189] whereas the CWWF predictions are somewhat lower.

We shall return to this point later for a detailed discussion. For the present, we shall

consider the results of fission probability calculations.

The calculated and experimental values of fission probability are shown in Fig. 4.3

for four compound nuclei. While the fission probability for 251Es is almost 100%, for

224Th, we shall consider the complimentary cross-section, the evaporation residue cross

section separately in the next chapter. Hence they are excluded from the present dis-

cussion. The calculated values of fission probability complements the picture of fission

dynamics which was obtained while discussing the prescission neutron data. The fission

probability is found to be more sensitive to the choice of friction at lower excitation en-

ergies than at higher excitations. The CWWF predicted fission probabilities are larger

than those from the WF predictions. Moreover, the CWWF predictions are consis-

tently closer to the experimental values of fission probability than those from the WF

predictions. In order to gain further insight into the dynamics of fission, we have also

calculated the presaddle and postsaddle (saddle to scission) contributions to the mul-

tiplicity of prescission neutrons. Figure 4.4 shows the results obtained with both the

CWWF and WF. For all the cases, starting from almost zero multiplicity at small exci-

tation energies, the postsaddle contribution increases at higher excitation energies. It is

further observed that the postsaddle neutron multiplicities calculated with the CWWF

and WF are almost same for all the compound nuclei over the range of excitation en-

ergies considered here. This would be due to the fact that the number of postsaddle

neutrons depends on the time scale of descent from the saddle to the scission. This, in

turn, will depend upon the strength of the friction between the saddle and the scission

and we have already seen in Fig. 2.2 that the CWWF and WF are indeed close at large
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deformations. We shall next compare the presaddle contributions calculated with the

CWWF and WF for each of the nuclei under consideration. We immediately notice

that the WF predictions are consistently larger than those from the CWWF at higher

excitation energies. This gives rise to the enhancement of the WF prediction for total

prescission multiplicity compared to that from the CWWF prediction, which we have

already noticed in Fig. 4.2 and have discussed earlier. Since the CWWF predicted
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neutron multiplicities agree with the experimental values for the nuclei 178W, 188Pt,

200Pb, 213Fr, and 224Th, we conclude that the chaos-weighted wall friction provides the

right kind of friction to describe the presaddle dynamics of nuclear fission.

While comparing the relative importance of the presaddle and postsaddle neutrons,

we further note that the postsaddle neutrons are more frequently emitted from heavier

compound nuclei. For 251Es, most of the prescission neutrons predicted by the CWWF

are accounted for by the postsaddle neutrons. The underlying physical picture can

be described as follows. When a compound nucleus is formed in a heavy-ion induced
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fusion reaction, its spin distribution is assumed to be given by Eq. 4.1. If the compound

nucleus is formed with a spin at which there is no fission barrier, its transition to the

scission point will be essentially considered as postsaddle dynamics. In order to simplify

our discussion, let us assume that most of the compound nuclei at a given excitation

energy are formed with the spin lc of Eq. 4.1 and let lb be the limiting spin value at

which the fission barrier vanishes. We can then find a critical excitation energy, Ecrit,

above which lc becomes greater than lb and most of the fission dynamics at excitations

above this critical value can be considered as comprising of only postsaddle trajectories.

In Fig. 4.5, we have plotted the fraction of neutrons emitted in the postsaddle stage

as a function of the excitation energy for a number of compound nuclei. The critical

excitation energy for each nucleus is also given in this plot. We have used the CWWF

predicted neutron multiplicities for this plot where we find that the critical excitation

energy decreases with increase in the compound nuclear mass. Thus the dominance

of postsaddle neutrons sets in at lower excitation energies for heavier nuclei which, in

turn, gives rise to the increase in the fraction of postsaddle neutrons with increasing

mass of the compound nucleus.

Though the above discussion clearly establishes the importance of postsaddle neu-

trons for a very heavy compound nucleus, the number of postsaddle neutrons calculated
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with the CWWF still falls short of making the total prescission multiplicity equal to

the experimental values for 251Es. We consider the apparent better agreement between

the WF predicted prescission neutron multiplicity and the experimental data for 251Es

as shown in Fig. 4.2 as a mere coincidence and we do not find any physical justification

for abandoning the chaos-weighted factor in one-body friction for such heavy nuclei. In-

stead, we feel that the mechanism of neutron emission in the postsaddle stage requires

a closer scrutiny essentially because the nucleus becomes strongly deformed beyond

the saddle point. The neutron decay width of such a strongly deformed nucleus could

be quite different from that of the equilibrated near-spherical nucleus which we use in

our calculation. In particular, the neutron-to-proton ratio is expected to be higher in

the neck region than that in the nuclear bulk and this can cause more neutrons to be

emitted. Further, dynamical effects such as inclusion of the neck degree of freedom

in the Langevin equation can influence the time scale of the postsaddle dynamics and

hence the number of emitted neutrons. Such possibilities should be examined in future

for a better understanding of the postsaddle dynamics of nuclear fission. The results

presented in this section is published in Ref. [158].

4.3 Summary

We have applied a theoretical model of one-body nuclear friction, namely the chaos-

weighted wall friction, to a dynamical description of compound nuclear decay where

fission is governed by the Langevin equation coupled with the statistical evaporation

of light particles and photons. We have used both the normal wall friction and its

modified form with the chaos-weighted factor in our calculation in order to find its

effect on the fission probabilities and prescission neutron multiplicities for a number

of compound nuclei. The strength of the chaos-weighted wall friction(CWWF) being

much smaller than that of the wall friction, the fission probabilities calculated with

the CWWF are found to be larger than those predicted with the WF. On the other

hand, the prescission neutron multiplicities predicted with the CWWF turn out to

be smaller than those using the WF. Both the prescission neutron multiplicity and

fission probability calculated with the CWWF for the compound nuclei 178W, 188Pt,
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200Pb, 213Fr, and 224Th agree much better with the experimental data compared to the

predictions of the WF.

We have subsequently investigated the role of presaddle and postsaddle neutrons at

different excitation energies for different compound nuclei. It has been shown that the

majority of the prescission neutrons are emitted in the postsaddle stage for a very heavy

nucleus like 251Es. The CWWF, however, cannot produce enough neutrons to match

the experimental prescission multiplicities for such a nucleus. It is, therefore, possible

that in the postsaddle region, either the fission dynamics gets considerably slowed down

or the neutrons are more easily emitted. These aspects require further studies before

we draw conclusions regarding the postsaddle dynamics of nuclear fission.

The presaddle neutrons are however found to account for most of the prescission

neutrons for lighter nuclei at lower excitation energies. On the basis of the comparison of

the calculated prescission multiplicities with experimental data as given in the preceding

section, we can conclude that the chaos-weighted wall friction can adequately describe

the fission dynamics in the presaddle region.



Chapter 5

Evaporation residue cross-sections
as a probe for nuclear dissipation

Experimental studies of the prescission multiplicities of neutrons [187], γ rays [89],

and charged particles [191] have shown that the fission process is strongly hindered

relative to expectations based on the statistical model description of the process, as we

have already discussed in the previous chapters. However, it is not possible to infer

from these experiments whether the emission of the particles occur mainly before or

after the traversal of the saddle point as the system proceeds toward scission. This

kind of information could be useful to discriminate between various dissipation models

which are strongly dependent on the deformation and shape symmetry of the system.

The evaporation probability for hot nuclei formed in heavy-ion fusion reactions can

be useful for such purposes which is sensitive only to the dissipation strength inside

the fission barrier. As the hot system cools down by the emission of neutrons and

charged particles there is a finite chance to undergo fission after each evaporation step.

If the fission branch is suppressed due to dissipation there is therefore a enhanced

probability for survival which manifests itself as an evaporation residue cross section

which is larger than expected from statistical model predictions. It turns out that the

evaporation residue(ER) cross-section depends strongly on the strength of the nuclear

dissipation whenever it is a very small fraction of the total fusion cross section[192].

The fate of a compound nucleus, i.e., whether it will undergo fission or survive as an

evaporation residue is decided mainly within the saddle point. Hence the measurement

of evaporation residue formation probability is expected to be a sensitive probe for

99



100

nuclear friction and may therefore provide the desired separation between presaddle

and post-saddle dissipation. It is concluded in Ref. [86] that evaporation residue cross

sections give restrictions for possible η( friction parameter) values, and seem to be even

more sensitive probes for friction than γ-rays which is generally considered as a good

probe for investigating dynamics in fission.

In a recent work, Diószegi et al. [159] have analyzed the γ as well as neutron mul-

tiplicities and evaporation residue cross-section of 224Th and have concluded that the

experimental data can be fitted equally well with either a temperature or a deformation-

dependent nuclear dissipation. Interestingly, the deformation-dependence of the above

dissipation corresponds to a lower value of the strength of the dissipation inside the sad-

dle and a higher value outside the saddle, similar to the phenomenological dissipation

of Ref. [150]. It is worthwhile to note here that our model for nuclear friction i.e., the

shape-dependent chaos-weighted wall friction (CWWF) has features similar to the em-

pirical dissipations discussed above. In the present work, we shall employ the CWWF

to calculate the evaporation residue excitation function for the 224Th nucleus. Our main

motivation here will be to put the CWWF to a further test and verify to what extent

it can account for the experimental evaporation residue data which is a very sensitive

probe for nuclear dissipation. Calculation will be performed at a number of excitation

energies for 224Th formed in the 16O+208Pb system. We have chosen this system es-

sentially because of the availability of experimental data on both evaporation residue

and prescission neutron multiplicity covering the same range of excitation energies and

the fact that earlier analysis of the evaporation residue excitation function have already

indicated the need for a dynamical model for fission of this nucleus [87, 189, 193].

5.1 Calculation

The various inputs required for the model and the different steps involved in the cal-

culation of evaporation residue probability are exactly same as those involved in the

calculation of fission probability as described in chapters 2 and 4. The same notations

and procedure will be followed in the present calculation and hence is not repeated here.

A Langevin trajectory will be considered as undergone fission if it reaches the scission
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point (csci) in course of its time evolution. Alternately it will be counted as an evapo-

ration residue event if the intrinsic excitation energy becomes smaller than the fission

barrier and the binding energies of neutron, proton and alpha. The calculation proceeds

until the compound nucleus undergoes fission or becomes an evaporation residue. This

calculation is repeated for a large number of Langevin trajectories and the evaporation

residue formation probability is obtained as the fraction of the trajectories which have

ended up as evaporation residues. The evaporation residue cross-section is subsequently

obtained by multiplying the experimental value for fusion cross-section in the entrance

channel with the formation probability of the evaporation residue. Similarly, the aver-

age number of particles (neutrons, protons or alphas) emitted in the fission events will

give the required prescission particle multiplicities. The calculated evaporation residue

excitation function and prescission neutron multiplicities will be compared with the

experimental values in the next section.

5.2 Results

The results which are presented in this section is reported in Ref. [194]. We have

calculated the prescission neutron multiplicity(νpre) and the evaporation residue(ER)

cross-section for the compound nucleus 224Th when it is formed in the fusion of an

incident 16O nucleus with a 208Pb target nucleus. The calculation is done at a number

of incident energies in the range of 80 MeV to 140 MeV using both the WF and the

CWWF.

Fig. 5.1 shows the calculated prescission neutron multiplicity along with the experi-

mental data [189]. Both the wall friction(WF) and chaos-weighted wall friction(CWWF)

predictions for νpre are quite close to the experimental values and this shows that neu-

tron multiplicity is not very sensitive to the dissipation in fission in the energy range

under consideration. It must be pointed out, however, that the CWWF predictions for

neutron multiplicity are closer to experimental data compared to those from WF at

much higher excitations of the compound nucleus[158].

We shall next consider the results of the evaporation residue calculation. Fig. 5.2

shows the evaporation residue cross-section(σER) excitation functions calculated using
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both the WF and CWWF. The experimental values[87] of evaporation residue cross-
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Figure 5.1: Prescission neutron multiplicity (νpre) excitation function calculated with
WF (dashed line) and CWWF (full line) frictions for the reaction 16O+208Pb. The
experimental points (dots) are also shown.

section are also shown in this figure. We first note that the calculated evaporation

residue cross-section is very sensitive to the dissipation in the fission degree of freedom.

The WF predictions are a few times (typically 2-5) larger than those obtained with the
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Figure 5.2: Evaporation residue cross-section excitation function calculated with WF
(dashed line) and CWWF (full line) frictions for the reaction as in fig.2. The experi-
mental points (dots) are also shown.
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CWWF. Next we make the important observation that the CWWF predicted excita-

tion function is much closer to the experimental values than that obtained with the

WF. This observation clearly shows that the chaos-weighted factor in CWWF changes

its strength in the right direction. We must take note of the fact, however, that the

CWWF still considerably overestimates the ER cross-section. Since the present dynam-

ical calculation considers only one (elongation) fission degree of freedom, it is expected

that inclusion of the neck degree of freedom will increase the fission probability [162]

further and hence reduce the ER cross-section. We plan to extend our work in this

direction in future. We further observe that while a peak appears in the experimental

excitation function at about 85 MeV, the same is shifted by 10 MeV in our calculated

results. We do not have any explanation for this discrepancy except pointing out that

there is no free parameter in our calculation and thus no parameter tuning has been

attempted in order to fit experimental data. A similar shift has also been observed in

an earlier work[159].

The structure of the evaporation residue excitation function can also reveal certain

interesting features. Since the calculated values of the evaporation residue cross-section

are obtained as the product of the fusion cross-section and the probability of evaporation

residue formation, the initial rise of the ER cross-section with beam energy essentially

reflects the steep rise of fusion cross-section in this energy region [193]. The high energy

part of the ER cross section excitation function is due to charged particle emission and

this part even seems to rise slowly with excitation energy[86]. The reason for that is

that after the emission of some charged particles the daughter nuclei becomes less fissile

and survive with higher probability. This mechanism works more successful for higher

excitation energy because of the reduced role of the Coulomb barrier. This establishes

the significant role of charged particle emission in the survival probability of a nucleus.

An experimental finding like this is reported in Ref. [195]. At higher beam energies, the

ER cross-section becomes approximately stable which results from a delicate balance

between the increasing trend of the fusion cross-section and the decreasing trend of

the probability of ER formation. Had the ER formation probability decreased at a

rate higher than those obtained in the present calculation, the resulting ER cross-
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section would have decreased at higher compound nuclear excitations. In fact, such an

observation was made in Ref. [87] where the ER cross-section obtained from standard
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Figure 5.3: The top three panels show the fission partial widths for 224Th, 223Th and
222Th (see text). The total width Γtot includes the neutron, proton, alpha and γ evapo-
ration widths in addition to the fission width. The bottom panel displays the excitation
function of the evaporation residue formation probability for the reaction as in Fig. 5.1

statistical model calculation was found to decrease very steeply beyond 100 MeV of
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beam energy. In order to explore this point a little further, we have calculated the

excitation function of the partial width for fission. Since fission can take place at any

stage during neutron (or any other light particle) evaporation, the partial widths are

calculated for 222Th and 223Th as well at excitation energies reduced by the neutron

separation energy after each neutron emission. The compound nuclear spin was taken

as lc from Eq. 4.2 (section 4.1.2) while only chaos-weighted wall friction was considered

for this calculation.

The calculated excitation functions of the fission partial widths are shown in Fig.

5.3. The calculated values of the ER formation probability (PER) are also displayed in

this figure. Each partial width excitation function is found to have a minimum around

90 MeV of beam energy after which it starts increasing till this trend is arrested and

reversed at higher excitations. Recalling the fact that the above results on partial

widths are only indicative while PER is obtained from a full dynamical calculation, it

is of interest to note that a bump in the excitation function of PER also appears in

the above (∼ 90 MeV) energy range. Subsequently, the value of PER drops rather

sharply before it settles to a steady value at higher excitations. This feature is also

complementary to that of the excitation functions of the partial widths of fission. We

thus demonstrate in a schematic manner how the structure in the excitation function

of the ER cross-section is related to the competition between fission and other decay

channels at different stages of fission.

5.3 Summary

We have applied a theoretical model of one-body nuclear friction, namely the chaos-

weighted wall friction, to a dynamical description of compound nuclear decay where

fission is governed by the Langevin equation coupled with the statistical evaporation

of light particles. We have used both the standard wall friction and its modified form

with the chaos-weighted factor in order to calculate the prescission neutron multiplicity

and evaporation residue excitation functions for the 224Th nucleus. Though the number

of the prescission neutrons calculated with either wall friction or chaos-weighted wall

friction are found to be very close to each other in the energy range considered, the
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evaporation residue cross-section is found to depend very strongly on the choice of nu-

clear friction. The evaporation residue cross-section calculated with the CWWF gives

a much better agreement with the experimental data compared to the WF predictions.

This result demonstrates that the consequences of chaos in particle motion give rise

to a strong suppression of the strength of the wall friction for compact shapes of the

compound nucleus which, in turn, brings theoretically calculated evaporation residue

cross-sections considerably closer to the experimental values. Thus the chaos consider-

ations may provide a plausible explanation for the shape-dependence of the strength of

nuclear friction which was found [150, 159] to be necessary in order to fit experimental

data.



Chapter 6

Effect of transients in nuclear fission

Induced nuclear fission had been viewed by H. A. Kramers as a diffusion process of the

fission degree of freedom over the fission barrier long before the successful developments

of transport theories for description of heavy ion reactions [8]. In the eighties, forty years

after Kramers, Weidenmüller et al. made a detailed study of nuclear fission using the

Fokker-Planck equation within the framework of this diffusion model [32]. The work of

Weidenmüller et al. first revealed that it requires a certain interval of time to develop a

steady probability flow at the saddle point across the fission barrier. During this time

interval, also referred to as the transient time (τ), the probability flow at the saddle

point increases from zero to its stationary value. This stationary probability flow also

defines the stationary fission width (Γ0) and the associated fission life time (τf = h̄/Γ0).

More specifically, the fission-decay width Γf (t) is inhibited at its earliest times and thus

at the beginning of the process, during a delay of the order of the transient time τ , the

fission-decay width differs from its asymptotic value ΓK
f (≃ Γ0), originally derived by

Kramers by solving the stationary Fokker-Planck equation[8].

The transient time which arise from the relaxation of the collective degrees of free-

dom has significant effects on the prescission particle and γ multiplicities and on the

future evolution of the nucleus, in particular its fission probability. The crucial quan-

tities which govern the time evolution of the probability current across the barrier are:

the excitation energy of the system, the height of the fission barrier and the nuclear

friction coefficient. Depending on the values of these quantities, completely different

situations may be encountered. One possibility is a slow attainment of a quasistation-
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ary regime of probability flow over the transient time τ . On the other extreme, the

entire distribution may pass the barrier in a single swoop and the whole fission process

becomes a transient[37]. These different situations are clearly not taken into account

in the “statistical model” of Bohr and Wheeler, which assumes from the outset the

existence of a quasistationary regime at the saddle point. In particular, when the en-

tire distribution comes close to pass the barrier in a single swoop it is not possible to

define a fission width in the usual sense. Thus the standard treatment of the cascade

de-excitation and associated cooling of a compound nucleus via particle emission and

fission needs to be modified accordingly.

Weidenmüller and his coworkers generalized the quasistationary approach of Kramers

to a time dependent one and derived for the first time a time dependent fission width

solving the Fokker-planck equation analytically as well as numerically within the frame-

work of a simplified model. From their numerical calculations, the authors of Ref. [196]

extracted the following information for the transient time, defined as the time until the

fission width Γf(t) reaches 90% of its asymptotic value:

τ =
1

β
ln
(

10Bf

T

)

for β < 2ωg

=
β

2ωg
2

ln
(

10Bf

T

)

for β > 2ωg (6.1)

where Bf is the fission-barrier height, T is the nuclear temperature, ωg is the effective

oscillator frequency (harmonic oscillator osculating the nuclear potential at the first

minima) at the ground state, and β(= η/m) is the effective reduced dissipation coef-

ficient which rules the relaxation of the collective degrees of freedom towards thermal

equilibrium. They distinguished two regimes for the motion of the collective variable

in the first minimum of the potential, which is characterized by a specific value β0

(= 2ωg) of the reduced nuclear friction coefficient β : for β < β0 the motion of the

collective variable is underdamped while for β > β0 it is overdamped. Thus a semi-

quantitative estimate of the transient time τ was obtained and it was found to increase

with decreasing values of β in the underdamped case while it increases linearly with β

in the overdamped case. In both the cases they derived simple analytical formula for

the time-dependent fission width.
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The dominant role of transients on lifetime of induced fission at high excitation

energies(≥ 100 MeV) is emphasized in Ref. [196]. The detailed study and effects of

transients in the case of overdamped motion can be found in Ref. [197]. In cases

where the system is highly excited and the potential minimum is very shallow or non

existent(no fission barrier), the entire fission process is predominantly or completely

a transient phenomenon. The transient time for such cases is redefined and a simple

analytical expression is given in Ref. [37]. It appears essentially as the time for the

onset of the exponential growth of fluctuations i.e. the time when the system becomes

globally unstable and breaks apart. The solution of Fokker-Planck equation to arrive

at an analytical expression for the time-dependent fission width is significant since

incorporation of this Γf (t) in a statistical model evaporation code is equivalent to a

dynamical study of nuclear fission by Langevin or Fokker-Planck equation [198]. Due

to the high computing time required by the Langein or the Fokker-Planck approaches,

this equivalent procedure of using a cascade code (where fission is treated as one of the

decay channels and time dependence of fission width is explicitly taken into account)

is often preferred to interpret experimental data. This realization motivated improved

deduction of Γf(t) from the analytical solution of the Fokker-Planck equation. One

of the work worth mentioning is the meticulous investigation by B. Jurado et al. of

the evolution of the probability distribution of the system in phase space all along its

dynamical path which resulted in extracting the main features of the relaxation process

towards equilibrium [199]. Characteristic features of the evolution of the amplitude of

the probability distribution and the velocity profile at the fission barrier were derived.

Making use of these results, they have developed an easily calculable approximation of

the time dependent fission-decay width that is based on realistic physical assumptions,

taking the initial conditions into account properly. This new analytical formulation of

Γf(t) was able to reproduce rather closely the trend of the exact numerical solution in

the under- as well as in the over-damped regime[200].
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6.1 Experimental signatures

The tools most frequently applied to measure fission time scales are the neutron clock[65]

and the gamma clock[67]. They have yielded the majority of the available information

on the time interval a heavy nuclear system needs to cross the scission point. However,

the mean scission time is an integral value, including the transient time, the inverse

of the stationary decay rate(the statistical decay time) and an additional dynamic

saddle-to-scission time. Thus it does not give direct access to the transient time that

is connected to the equilibration process of the compound nucleus. The total fission

or evaporation residue cross section have been used to investigate dissipation at low

deformation, but they are not sufficient to determine transient effects in an unambiguous

way. The challenge to observe transient effects is increased by the fact that they show

up only in a restricted energy range. The calculations of Ref. [201] have shown that

that fission is affected by transient effects only for excitation energies at saddle within

the interval 150MeV < E∗
saddle < 350MeV . At excitation energies below 150 MeV,

the statistical decay times for fission is appreciably longer than typical dynamical time

scales, making the dynamical observables rather insensitive to the transient time. This

point may explain why in several experiments performed at rather low excitation energy

no transient effects at all were observed[202]. In fact, the observation of transient effects

requires a reaction mechanism that forms excited nuclei with an initial population in

deformation space far from equilibrium and an experimental signature that is specifically

sensitive to the delayed population of transition states.

In peripheral relativistic heavy-ion collisions using 238U at 1 A GeV, fission studies in

inverse kinematics were carried out at GSI[203]. They studied projectile-fragmentation -

fission reactions and introduced two experimental signatures to observe transient effects

in fission. The total fission cross sections of 238U projectiles at 1 A GeV were studied

as a function of the target mass and also the partial fission cross sections and the

partial charge distributions of the fission fragments were investigated for the reaction

of 238U on (CH2)n target. The first signature exploited to measure transient effect was

given by the partial fission cross-sections, i.e. the fission cross sections as a function

of Z1 + Z2. At high excitation energies particle decay times become smaller than the
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transient time and the nucleus can emit particles while fission is suppressed. Therefore,

for the lightest fissioning nuclei (lowest values of Z1 + Z2) transient effects will lead

to a considerable reduction of the fission probability. The second signature is based

on the charge distribution of the fission fragments that result from a given fissioning

element. The width of the charge distribution of the fission fragments is a measure of

the saddle point temperature[203] and thus for the lower values of Z1 + Z2 where the

initial excitation energy is large and fission is suppressed with respect to evaporation,

the nucleus will evaporate more particles on its way to fission. Therefore, transient

effects will reduce the temperature of the system at saddle and consequently the width

of the charge distributions[204]. These experimental observables were compared with

an extended version of the abrasion-ablation Monte-Carlo code ABRABLA to deduce

quantitative results on transient effects. The results demonstrated the suppression of

fission at high excitation energies and thus established the importance of transients.

6.2 Transients in our model

The studies of transients as described earlier in this chapter were carried out under a

number of simplifying assumptions. The potential chosen was not realistic(simplified)

and the inertia and friction parameter were taken as constants so that analytical solution

of the Fokker-Planck equation is possible as well as the numerical solution becomes

easier. However it has been established by extensive experimental data that friction

coefficient is not constant but strongly shape dependent and hence numerical study of

the fission process becomes inevitable. This motivated us to use our model for friction

namely the chaos-weighted wall friction in Langevin dynamics and study the effects of

transients in nuclear fission in a much more realistic framework with a Yukawa plus

exponential double folding potential.

In the present work, we would examine certain issues related to the time dependence

of fission widths and its effect on the multiplicity of the prescission neutrons. First, we

would study the effect of lowering the fission barrier on the time dependence of the

rate of fission. The motivation for this study is to find the transition from a diffusive

process in the presence of a fission barrier to a transient dominated picture when there
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is no fission barrier. We would indeed find that the diffusive nature of fission continues

to some extent even for cases which have no fission barrier. The underlying physical

picture that would emerge for fission in the absence of a fission barrier would be as

follows. Consider an ensemble of fission trajectories which have started together sliding

down the potential (with no fission barrier) towards the scission point. However, the

random force acting on the trajectories will introduce a dispersion in their arrival time

at the scission point. In other words, the trajectories will cross the scission point at

different instants and a flow will thus be established at the scission point. However,

the effect of this dispersion will be reduced when the conservative force becomes much

stronger than the random force. This would happen at very large angular momentum

of the fissioning nucleus due to the strong centrifugal force. Therefore, the single swoop

picture for fission becomes more appropriate at very large values of spin of the nucleus.

We would establish the above scenario in the first part of our work.

It is already stated that the study of fission dynamics using Langevin or Fokker-

Planck equation requires huge amount of computation time and can be avoided by

adopting an alternative and easier approach which is to perform a statistical model

calculation by modifying a cascade code in which fission is treated as one of the decay

channels and the time dependence of the fission width is explicitly taken into account

[198]. In such calculations, the input fission widths and the transient times are usually

taken from the analytical expressions deduced from the solution of the Fokker-Planck

equation under simplifying assumptions [8, 32, 59, 200]. These analytical expressions

for Γf (t) were all obtained under the approximation of constant, shape-independent

nuclear friction. However, since friction was shown to be strongly shape dependent by

extensive experimental work and theoretical analysis, numerical solution of the dynam-

ical equation is essential. In our work, the fission widths will be obtained numerically

by solving the Langevin equation using the chaos-weighted wall friction[174] (as de-

scribed in chapter 3) and the transient time will be obtained by fitting the numerically

calculated fission widths with an analytical expression. Thus the expression for Γf(t) to

be used in the statistical calculation has inputs from the numerically solved Langevin

dynamics and hence is a much realistic description of the actual process. In the next
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part of our work, we would perform such statistical model calculations for prescission

neutron multiplicity using the time dependent fission widths as well as the single swoop

description of fission. This would be done with the aim of finding how well the sta-

tistical model calculations with and without the single swoop assumption agree with

each other. We would subsequently calculate the prescission neutron multiplicity in a

dynamical model of fission and compare the results with those obtained from the sta-

tistical calculations with time dependent fission widths. Though one would expect the

results from the statistical and the dynamical calculations to be the same, there could

be some differences and we would ascertain the magnitude of such differences from our

calculation.

As we have shown in chapter 4, the prescission neutron multiplicity and fission prob-

ability calculated from Langevin dynamics using the chaos-weighted wall friction were

found to agree fairly well with the experimental data for a number of heavy compound

nuclei (A ∼ 200) over a wide range of excitation energies [158]. This observation as

well as the fact that CWWF does not contain any free parameter to fit experimental

data motivated us to use this modified form of one-body friction to pursue our study of

transients in this work. In the 3rd chapter, a systematic study of fission widths using

this friction is already reported. That study was confined to cases with fission barriers

whereas we would concentrate upon fission in the absence of a barrier in the present

chapter. The details of our model including the nuclear shape, potential, inertia and

friction is given in the 2nd chapter. The next section will contain the numerical results

of our study while the last section will present a summary of this chapter.

6.3 Results

6.3.1 Fission widths from Langevin equation

The time-dependent behaviour of fission widths under different physical conditions is

being studied here using the Langevin equation. Starting with a given total excitation

energy (E∗) and angular momentum (l) of the compound nucleus, the energy conser-

vation in the following form,

E∗ = Eint + V (c) + p2/2m (6.2)
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gives the intrinsic excitation energy Eint and the corresponding nuclear temperature

T = (Eint/a)1/2 at each integration step. A Langevin trajectory will be considered

as having undergone fission if it reaches the scission point (csci) in the course of its

time evolution. The calculations are repeated for a large number (typically 100 000 or

more) of trajectories and the number of fission events is recorded as a function of time.

Subsequently the time dependent fission rates can be easily evaluated as described in

chapter 3.

We have chosen the 200Pb compound nucleus for our study which has been experi-

mentally formed at different excitation energies in a number of heavy ion induced fusion

reactions [62, 187, 188]. The results which will be described in this section is reported

in Ref. [205]. Fig. 6.1 shows the calculated time dependent fission widths at differ-

ent spins of the compound nucleus for a given temperature. A number of interesting

observations can be made from this figure. The time dependence of the fission width

of the compound nucleus with a spin of 40h̄ (and with a fission barrier) is typical of a

diffusive flow across the fission barrier which has been studied extensively in chapter

3[174]. The fission width is found to remain practically zero till a certain interval of

time (t0) which essentially corresponds to the interval after which the fission trajectories

start arriving at the scission point. The fission width subsequently increases with time

till it reaches its stationary value (Γ0). The following parametric form will be used for

the time dependent fission width in order to enable us to use it in our later calculations,

Γ(t) = Γ0[1 − exp(−(t − t0)/τ)]Θ(t − t0) (6.3)

where τ is a measure of the transient time after which the stationary flow is estab-

lished and Θ(t) is the step function. The intervals t0 and τ are obtained by fitting the

calculated fission widths with the above expression.

It is observed from Fig. 6.1 that the nature of the time dependence of the fission

width remains almost same even though the fission barrier decreases and subsequently

vanishes with increasing spin. At very large values of spin, however, fluctuations appear

at the later stages of time evolution. These fluctuations are statistical in nature because

the number of nuclei which have not yet undergone fission decreases very fast with

increasing time for higher values of spin and therefore introduces large statistical errors
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Figure 6.1: Time development of fission widths calculated for the compound nucleus
200Pb at a temperature of 2 MeV for different nuclear spins l. The corresponding values
of the fission barriers Bf are also given.

in the measured numbers. The magnitude of the fluctuations can thus be reduced by

considering a larger number of fission trajectories. In our calculation, we have taken

particular care by using larger ensembles at higher values of nuclear spin in order to

enable us to check whether a stationary value of the fission width is attained at all.
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The above observation is of particular interest since it shows that the diffusive nature

of fission persists even for cases which have no fission barrier. This diffusive nature is a

consequence of the random force acting on the fission trajectories as we have discussed

earlier. As a compound nucleus is formed having no potential pocket in the fission

channel, it starts rolling down the potential towards the scission point. However, the

random force acting on these fission trajectories introduces a spread in their arrival time

at the scission point. The spread in the arrival time of the fission trajectories gives rise

to a finite fission width as we find in Fig. 6.1.
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Figure 6.2: Survival probability of the compound nucleus 200Pb against fission at a
temperature of 2 MeV for different nuclear spins l. The corresponding values of the
ratio of the transient time to the fission life time (τ/τf ) are also given.

In order to further investigate the above diffusive nature of fission, the fraction of

the number of compound nuclei which have survived fission is shown as a function of

time in Fig. 6.2. The same compound nuclei as in Fig. 6.1 has been considered for

this figure. Here we find a gradual shift in the decay rate with increasing spin of the

compound nucleus. Specifically, the exponential decay of the number of compound

nuclei having a fission barrier (with spins 40 and 56h̄) is found to continue for those
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without fission barriers (with spins 66, 70 and 90h̄). Subsequently the fraction of

the surviving compound nuclei have been calculated from the Langevin dynamics by

switching off the random force. Fig. 6.3 shows this decay in which all the nuclei have

the same life time which is simply the swooping down time (τs) from the initial to the

scission configuration. The spread in the life time of the trajectories around this value

when the random force is switched on can also be seen in this figure. It may also be

noted that for very large values of the compound nuclear spin, the decay is very fast

and consequently, the above spread is very small. For such cases, fission is dominated

by the transients and can be approximated by a single swoop process.
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Figure 6.3: Survival probability of the compound nucleus 200Pb against fission at a
temperature of 2 MeV calculated with (solid line) and without (dashed line) the random
force in the Langevin equation.

The relevance of the different time scales in order to distinguish between the roles of

stationary flow and transients in fission will now be investigated. When the fission life

time (τf = h̄/Γ0) is much longer than the transient time τ , most of the fission events

take place after the establishment of a stationary flow. Evidently, this holds for nuclei

with a barrier in the fission channel. However, it is also possible to have τf > τ for

cases which have no fission barrier. This is illustrated in fig. 6.4 where the ratio τ/τf is
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Figure 6.4: The ratio of the transient time to the fission life time (τ/τf ) as a function of
the spin l of the compound nucleus 200Pb at two excitation energies (solid lines). The
transition region is indicated by the two arrows. The arrow at the critical angular mo-
mentum (lc) marks the beginning of the transition region. The next arrow corresponds
to τ/τf = 1 and indicates the end of the transition region. The partial cross sections
for compound nucleus formation are also shown (dashed lines).

plotted as a function of the spin of the nucleus. Beyond the critical angular momentum

(lc) at which the fission barrier vanishes, we find a window of angular momentum where

τf is indeed greater than τ . This window represents the transition region over which the

fission dynamics changes from a steady flow to transients. Fission becomes transient

dominated for spin values at which τ > τf . A single swoop description of fission can

be applied for such cases. However, a single swoop picture would be rather inaccurate

in the transition region where a steady flow still persists. In the next subsection,
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the consequences of using the single swoop description of fission in statistical model

calculations in terms of the multiplicities of prescission neutrons will be explored. It

would be of interest for our later discussions to locate the transition region with reference

to the spin distributions of the compound nuclei formed in heavy ion induced fusion

reactions. The spin distribution of the compound nucleus 200Pb obtained in the fusion

of 19F+181Ta at two excitation energies is therefore plotted. It is observed that the

transition region lies beyond the range of the spin distribution when the compound

nucleus is excited to 78 MeV, whereas it is well within the range of the spin values

populated at an excitation of 132 MeV. One would thus expect that the number of

prescisssion neutrons would be affected more at higher excitation energies when the

single swoop picture is used in the transition region.

6.3.2 Prescission neutrons from dynamical and statistical model

calculation

A comparison of the prescission neutron multiplicity from the Langevin dynamics of

fission as well as from a statistical model calculation (where time-dependent fission

widths will be used) is studied in details in this section. The details of the dynamical

model along with statistical evaporation of neutron and giant dipole γ is described in

the 4th chapter. The same procedure is followed in the present calculation. A Langevin

trajectory will be considered as undergone fission if it reaches the scission point in

course of its time evolution. Alternately it will be counted as an evaporation residue

event if the intrinsic excitation energy becomes smaller than either the fission barrier or

the binding energy of a neutron. The calculation proceeds until the compound nucleus

undergoes fission or ends up as an evaporation residue. The number of emitted neutrons

and photons is recorded for each fission event. This calculation is repeated for a large

number of Langevin trajectories and the average number of neutrons emitted in the

fission events will give the required prescission neutron multiplicity.

The statistical model calculation of prescission neutron emission proceeds in a similar

manner where a time-dependent fission width is used to decide whether the compound

nucleus undergoes fission in each interval of time evolution. The intrinsic excitation
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energy at each step is given by the total excitation energy minus the rotational energy

since no kinetic energy is associated with the fission degree of freedom in the statistical

model and the compound nucleus is assumed to be in its ground state configuration

(zero potential energy). Two prescriptions for the time-dependent fission widths will

be used in our calculation. In the first one, we shall use the parametric form of the

width given by Eq. 6.3 for all spin values including those for which there is no fission

barrier. The parameters Γ0, t0 and τ are obtained by fitting the numerically calculated

time-dependent widths. In the other statistical model calculation, the above parametric

form will be used only for those spin values which have fission barriers. For higher spin

values for which there is no fission barrier including those in the transition region,

the swooping down picture will be applied. For these cases, the swooping down time

τs is evaluated numerically as explained earlier. In this statistical model calculation,

neutron and γ evaporation can take place during this period τs while the nucleus will

be considered as undergone fission at the end of this interval.

Fig. 6.5 shows the calculated prescission neutron multiplicity at different excitation

energies of the compound nucleus 200Pb formed in the 19F + 181Ta reaction. Results

shown in this figure are obtained from the dynamical and statistical model calculations

which are continued for a period of 300h̄/MeV . This time period is not sufficient for

all the nuclei in the ensemble either to reach the fission fate or to become evaporation

residues. Pushing the Langevin calculation much beyond the above time period becomes

prohibitive in terms of computer time. The above time duration is however much longer

than the transient times and hence are adequate for our purpose of comparing the

dynamical and statistical results.

It is observed from Fig. 6.5 that the neutron multiplicity calculated from the statis-

tical model using the time-dependent fission widths with and without swooping down

assumption are almost same at lower excitation energies though they differ marginally

at higher excitation energies. Such a difference was anticipated in the earlier subsection

since the swooping down assumption is invoked more frequently for compound nuclei

at high excitation energies which are mostly formed with large values of spin and con-

sequently with no fission barrier. In order to explore this point further, the differential
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Figure 6.5: Prescission neutron multiplicities calculated from the statistical model with
(dotted line) and without (dashed line) the single swoop approximation (see text).
Results from the dynamical model (solid line) are also shown.

neutron multiplicities are obtained from the statistical model calculations with as well

as without the single swoop description and are shown in Fig. 6.6. The two calculated

distributions at an excitation energy of 132 MeV are found to be different beyond lc

though they merge again at the higher end of the transition region. This difference

essentially reflects the approximate nature of the single swoop description in the tran-

sition region. However, the magnitude of this difference is found to be rather small (∼
a few %). At a lower excitation of 78 MeV, the two distributions are almost identical

as one would expect since they have very little overlap with the transition region. The

significance of the above observations is of interest since it shows that for compound

nuclei without a fission barrier, considering a sharp valued life time (the swooping down

time τs) instead of a life time with a dispersion does not make any appreciable effect

in the number of emitted neutrons before fission. It is next observed in Fig. 6.5 that

the neutron multiplicity from the statistical (both calculations) and dynamical models
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Figure 6.6: Differential prescission neutron multiplicities calculated with the single
swoop approximation at two excitation energies (solid lines). The corresponding dis-
tributions without the single swoop approximation are shown by the dotted lines. The
transition regions are also indicated as in fig.4.

are also very close to each other though the statistical models marginally overestimate

the neutron multiplicity compared to the dynamical model. A possible explanation

for this observation would be the fact that the compound nuclear temperature in the

statistical model is higher than that in the dynamical model since a part of the total

excitation energy is locked up as kinetic energy of the fission mode in the dynamical

model. This reduces the intrinsic excitation energy and hence the temperature in the
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dynamical model resulting in a smaller number of evaporated neutrons.

It is already mentioned that a full dynamical calculation can take an extremely

long computer time particularly for those compound nuclei whose fission probability is

small. Hence the combined dynamical and statistical model, first proposed by Mavlitov

et al. is followed [178], in order to perform a full calculation. This approach has been

described in details in the previous chapter. In this model, the time evolution of a

compound nucleus is followed according to the Langevin equations for a sufficiently

long period (during which a steady flow across the fission barrier is established) and

then switch over to a statistical model description after the fission process reaches the

stationary regime. It is possible to continue this calculation for a sufficiently long time

such that every compound nucleus can be accounted for either as an evaporation residue

or having undergone fission.
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Figure 6.7: Prescission neutron multiplicities calculated from the statistical model with
(dotted line) and without (dashed line) the single swoop approximation and also from
the dynamical model (solid line) along with the experimental data. The results of a
statistical calculation using the stationary values of the fission widths are also shown
(dash-dotted line).

The prescission neutron multiplicity calculated with the above combined dynamical
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and statistical model is shown in Fig. 6.7 along with the full statistical model calcula-

tions. The statistical model calculations are made with as well as without the swooping

down assumption in the time-dependence of the fission widths. The experimental val-

ues are also shown in this figure. The observations made in this figure are similar to

those in Fig. 6.5, namely, the statistical calculations slightly overestimate the neutron

multiplicity compared to the dynamical (plus statistical) calculation. However, the sta-

tistical and dynamical results are quite close to each other and are also close to the

experimental values. This result therefore shows that the statistical calculation with

time-dependent fission width can represent the dynamical calculation with reasonable

accuracy. The results of a statistical calculation is also shown in this figure where the

fission widths are assumed to be independent of time and are given by their station-

ary values. This calculation substantially underestimates the neutron multiplicity and

illustrates the importance of transients at higher excitation energies.

6.4 Summary

We have presented in the above a numerical study of the transients in the fission of

highly excited nuclei and their effect on the number of neutrons emitted prior to fis-

sion. To this end, we first investigated the time-dependence of fission widths using the

Langevin dynamics of fission. We have shown that the fission width reaches a stationary

value after a transient period even for those nuclei which have no fission barrier. We

have discussed the role of the random force acting on the fission trajectories in introduc-

ing a dispersion in their arrival time at the scission point and thereby giving rise to a

finite rate of fission for such cases. We have also shown that this stationary fission rate

for very large values of spin of the nucleus loses significance since the stationary fission

life time itself becomes much smaller than the transient time for such cases. Therefore,

fission of nuclei rotating with a large angular momentum can be considered to proceed

in a single swoop. Our study demonstrates a gradual transition from a diffusive to a

single swoop picture of fission with increasing spin of the compound nucleus.

We have subsequently examined the effect of the transients on the multiplicity of the

prescission neutrons emitted in heavy ion induced fusion-fission reactions. We used both
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the diffusive description and the swooping down picture separately in statistical model

calculations and found close agreement between the two calculated neutron numbers

at low excitation energies whereas they differed marginally at higher excitations. It

was also shown that the differential neutron multiplicities calculated with and without

the single swoop assumption differ only in the transition region though the magnitude

of the difference is small. We therefore conclude that the single swoop description of

fission can be used in statistical model calculations without making any significant error

in the final observables.

We finally compared the number of neutrons calculated from a dynamical model

with that obtained from a statistical model in which time-dependent fission widths

are used. We found that the statistical model marginally overestimates the neutron

numbers than those from the dynamical calculation. We explained this difference in

terms of the temperature which is lower in the dynamical model than the statistical

calculation. The temperature turns out to be smaller in the dynamical model because

the excitation energy is shared between the collective fission mode and the thermal

mode in the dynamical calculation in contrast to the statistical calculation where the

full excitation energy is assumed to be available in the thermal mode. However, in

most of the fission events in the dynamical calculation, the kinetic energy builds up to

values which are a little above the fission barrier before it proceeds to fission. Since

the values of the fission barrier (typically a few MeV or less) are much smaller than

the excitation energies (a few tens of MeV or more) considered here, the temperature

differences between the statistical and dynamical calculations remain small for most of

the cases. Consequently the difference between the prescission neutron multiplicities

calculated from the dynamical and statistical models become small, as we have observed

in our calculation.



Chapter 7

Summary, discussions and future
outlook

7.1 Summary and discussions

A detailed study of fission dynamics of highly excited nuclei formed in heavy-ion colli-

sions is presented in this thesis with a view to extract knowledge about the dissipative

properties of hot fissioning nuclei. Chaos-weighted wall friction(CWWF) which is a

microscopic model of nuclear friction, is incorporated in a Langevin dynamical model,

and different observables namely prescission neutron multiplicity, fission probability and

evaporation residue cross-sections are calculated. CWWF takes into account the nonin-

tegrabilty of single particle motion in the nucleus and it resulted in a strong suppression

of friction strength for near spherical shapes of the nucleus. A general introduction to

the subject and application of Langevin dynamics in fission with description of different

input parameters are given in chapter 1 and 2 respectively.

In chapter 3 a systematic study of the fission widths is made for different excitation

energies and spins of a compound nucleus, using both CWWF and WF in the Langevin

equation. The fission widths calculated with CWWF turned out to be about twice

the widths calculated with the normal wall friction(WF). A parametric representation

of the calculated fission widths in terms of the temperature and spin of the compound

nucleus was made so that they can be used in subsequent statistical model calculation of

the decay of a highly excited compound nucleus which requires dynamically calculated

fission widths as inputs. The substantial enhancement in the fission widths with CWWF

126
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was expected to influence fission probability and neutron multiplicity and this motivated

the use of these parameterized widths in the next part of our work.

In chapter 4 of this thesis, the chaos-weighted wall friction is applied to a combined

dynamical plus statistical description of compound nuclear decay where fission is gov-

erned by the Langevin equation coupled with statistical evaporation of light particles

and photons. The calculation was done using both CWWF and WF and the results

show that both the prescission neutron multiplicity as well as the fission probability

calculated with the chaos-weighted wall friction for the compound nuclei 178W, 188Pt,

200Pb, 213Fr, and 224Th agree much better with the experimental data compared to the

predictions of the normal wall friction. The separate contributions of presaddle and

postsaddle neutrons at different excitation energies were investigated in order to gain

further insight into the dynamics of fission. The postsaddle neutron multiplicities cal-

culated with the CWWF and WF are almost same for all the compound nuclei over

the range of excitation energies considered. This is due to the fact that the number of

post saddle neutrons depend on the strength of friction between saddle and scission,

and CWWF and WF are indeed close to each other in this regime of large deformation.

The wall friction predictions for the presaddle contribution to neutron multiplicity are

consistently higher than those from CWWF at higher excitation energies and this gives

rise to the enhancement of the WF prediction for total prescission neutron multiplicity

as compared to that from CWWF predictions. Since CWWF predicted neutron multi-

plicities better agree with the experimental values for all the above nuclei, we conclude

that the chaos-weighted wall friction provides the right kind of friction to describe the

presaddle dynamics of nuclear fission.

It was also noted that the majority of the prescission neutrons are emitted in the

postsaddle stage for a very heavy nucleus like 251Es. The chaos-weighted wall friction,

however, cannot produce enough neutrons to match the experimental prescission mul-

tiplicities for such a nucleus. It is, therefore, possible that in the postsaddle region,

either the fission dynamics gets considerably slowed down or the neutrons are more eas-

ily emitted. The neutron widths from a highly deformed nucleus could be quite different

from that of the equilibrated near-spherical nucleus which we use in our calculation.
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Also, dynamical effects, like inclusion of the neck degree of freedom in the Langevin

equation can influence the time scale of post saddle dynamics and hence the number of

neutrons.

In chapter 5, we have used the evaporation residue cross-sections as probe for nuclear

dissipation. We have used both the standard wall friction and its modified form with

the chaos-weighted factor in order to calculate the prescission neutron multiplicity and

evaporation residue excitation functions for the 224Th nucleus. It is found that WF and

CWWF predictions for neutron multiplicity are very close to each other in the energy

range considered, and hence is not a sensitive probe for nuclear friction in this energy

regime. It is further noted from the results that the calculated evaporation residue

cross section is very sensitive to the dissipation in the fission degree of freedom, the WF

predictions being few times (typically 2-5) larger than those obtained with the CWWF.

The most important observation is that the CWWF predicted excitation function is

much closer to the experimental values than that obtained with the wall friction, which

clearly shows that the chaos-weighted factor in CWWF changes its strength in the right

direction. Thus the chaos considerations may provide a plausible explanation for the

shape-dependence of the strength of nuclear friction which was found [150, 159] to be

necessary in order to fit experimental data.

In chapter 6, a numerical study of the transients in the fission of highly excited

nuclei was presented using our dissipative dynamical model of nuclear fission and also

the effect of the transients on the number of prescission neutrons was investigated. The

detailed study of the time-dependent fission widths demonstrated a gradual transition

from a diffusive to a single swoop picture of fission with increasing spin of the com-

pound nucleus. It was found that the fission width reaches a stationary value after

a transient period even for those nuclei which have no fission barrier. The stationary

fission life time for such nuclei is much smaller than the transient time and hence fission

can be considered to proceed in a single swoop for nuclei rotating with large angular

momentum. For nuclei with no fission barrier, the diffusive picture and the swooping

down assumption were used separately in statistical model calculations and close agree-

ment was found on the calculated prescission neutron numbers which justified the use



129

of swooping down description of fission in statistical model calculation without making

any significant error in the final observables.

Finally, it was noted that statistical model calculation with time dependent fission

widths marginally overestimates the prescission neutron multiplicity than a dynami-

cal calculation. This is mainly because the intrinsic excitation energy turns out to be

smaller in the dynamical model since total excitation energy is shared between collec-

tive and thermal degrees whereas in statistical description the full excitation energy is

available in the thermal mode. The number of neutrons emitted depends sensitively

on the compound nuclear temperature which is directly proportional to the intrinsic

excitation energy and thus the dynamical model calculation ends up with a marginally

smaller number of neutrons. It is to be noted that this temperature difference between

the two types of calculation is small for most cases and hence the difference between

the neutron numbers as observed from the calculations is marginal and thus statistical

model calculation with time dependent fission widths can represent a dynamical model

calculation with reasonable accuracy.

7.2 Future Outlook

The dynamical model of fission of hot nuclei using the chaos weighted wall friction can

be extended to include the asymmetry degree of freedom in the dynamics in order to

study the fission fragment mass energy distributions. The available experimental data of

the prescission neutron multiplicities as a function of the fragment mass asymmetry and

kinetic energy can be compared with the results of this dynamical model which includes

asymmetry parameter as a collective coordinate. The comparison of such exclusive

experimental data with the theoretical results is in fact a crucial test for the stochastic

approach to fission dynamics based on the Langevin equations. This will also help in

analyzing and elucidating correlations between the prescission neutron multiplicities

and fission fragment mass energy distribution and to study the fission fragment angular

anisotropy. It is claimed in [65] that fission fragment angular anisotropy is strongly

affected by evaporation of presaddle neutrons and hence is a strong probe of dissipation,

in particular for compact configurations. Three dimensional Langevin calculations of
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the fission fragment mass energy distributions have been carried out[151, 152] using wall

friction with a adjustable reduction coefficient. Our model of nuclear friction (CWWF)

should be used for such three-dimensional dynamical calculations and analysis of the

relevant experimental data. This calculation will be of great significance since it can

predict the production cross section of exotic nuclei as asymmetric fission fragments.

The chance of formation of exotic nuclei by this method will depend sensitively on

nuclear dissipation and CWWF is expected to play a significant role. The production

cross-section of fission fragments predicted by the fission dynamics calculation is also

expected to have significant bearing on transmutation of nuclear waste.

The neck degree of freedom designated by the coordinate h in our shape parametriza-

tion, will be included in our dynamical model in near future in order to compare the

results of the already reported one dimensional calculation with the two dimensional

one. Fission rates obtained from the two dimensional calculation is expected to improve

upon that of the one dimension though the difference will not be very significant. On

the whole, the effect of incorporation of this additional collective coordinate in the dy-

namical model is expected to influence the prescission neutron multiplicity and fission

probability in a favourable direction. The inclusion of an additional degree of freedom

will increase the accuracy of our dynamical model and hence will be a better test of our

model of friction. The production cross section of evaporation residues which can be

better predicted from this multi-dimensional fission dynamics model will help in search

of superheavy elements formed as evaporation residues.

It was concluded from the analysis of our results of postsaddle, presaddle and total

prescission neutrons that chaos weighted wall formula is the right kind of friction to

describe the presaddle dynamics of a hot rotating nucleus. It was also noted that

for a heavy nucleus like 251Es, most of the prescission neutrons are contributed by

the post saddle ones and the calculated number using CWWF number falls short of the

experimental value by a considerable margin. In fact, it was seen that in order to match

experimental data, the empirical friction of Frobrich et al. needs to be much stronger

in the large deformation region(post saddle part) than that given by the chaos weighted

wall formula. However, there is no physical justification of increasing the strength of the
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nuclear dissipation in the post saddle region beyond that of the wall friction. Instead,

we feel that the mechanism of neutron emission in the postsaddle stage requires a

closer scrutiny essentially because the nucleus becomes strongly deformed beyond the

saddle point. The neutron decay width of such a strongly deformed nucleus could be

quite different from that of the equilibrated near-spherical nucleus which we use in

our calculation. In particular, the neutron-to-proton ratio is expected to be higher in

the neck region than that in the nuclear bulk and this can cause more neutrons to be

emitted. Further, dynamical effects such as inclusion of the neck degree of freedom

in the Langevin equation can influence the time scale of the postsaddle dynamics and

hence the number of emitted neutrons. Such possibilities should be examined in future

for a better understanding of the postsaddle dynamics of nuclear fission.

In our model we have not used any explicit temperature dependence of the dissipa-

tion coefficient. However, the necessity for clarifying the role of the deformation and the

temperature dependence is exemplified in a recent paper by Dioszegi et al. [159] who

were able to reproduce their data with a modified statistical model by applying either

a strong temperature dependent friction form factor or with a deformation dependent

form factor. A temperature dependence of nuclear friction is expected from general

considerations since large phase space becomes accessible for particle-hole excitations

at higher temperature. In fact in a microscopic calculation using linear response theory

Hofmann et al. have obtained a temperature dependence of the form of 0.6T 2. The role

of the temperature dependence of the friction factor predicted by microscopic theory is

still to be clarified by using it in Langevin calculations and confronting the results with

experimental data. Our model can be extended to include a form factor in the friction

coefficient which will represent the temperature dependence in order to examine its

effect on the final observables. Questions such as whether both shape and temperature

dependence should exist simultaneously or either one of them is sufficient should be

addressed in future. Investigations regarding the nature of dependence on temperature

is also to be carried out in order to arrive at a conclusive picture of the friction form

factor with respect to its deformation and temperature dependence.

Quantal corrections are expected to modify the fission rates from classical Langevin
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results up to quite high temperatures. A fission rate calculated with an influence func-

tional path integral technique gives a 20% enhancement as compared to a Kramers

rate for fission of 224Th at a temperature of 1.57MeV[206]. The inclusion of quantum

effects like the shell and the pairing correlations on the potential energy landscape is

expected to alter the barrier height which in turn will influence the fission rates and the

fragment mass distributions as seen in Ref. [207]. At lower temperatures, e.g. when

dealing with Langevin models for superheavy element formation, quantum effects are

more important.

It has already been discussed in chapter 1 (section 1.2.3) that the Langevin equation

needs to be generalized to allow for finite memory effects when the time scale of the

fission degree of freedom becomes comparable to that of the intrinsic degrees of freedom.

Thus one has to deal with a non-Markovian process when the collective motion is

faster than it is assumed in our dissipative dynamical model. The chaos weighted wall

friction can be extended in future to include the memory effects in order to examine

its influence on the final observables. It is shown in a paper by Kolomietz et al. [208]

that the elastic forces produced by the memory integral in the friction kernel lead to a

significant delay for the descent of the nucleus from the barrier. Numerical calculations

for the nucleus 236U show that due to memory effect the saddle-to scission time grows by

a factor of about 3 with respect to the corresponding saddle-to -scission time obtained

in liquid drop model calculations with friction forces[208]. This observation implies

that incorporation of the memory effects in our calculation may increase the saddle to

scission time and in turn the total prescission neutron multiplicity. In fact this effect

can account for the empirical need of large increase in the strength of friction in the

post saddle region. Thus the non Markovian dynamics may be a possible explanation

for the extra neutrons in the post saddle region.

The study of fission dynamics using the concept of “Mean First Passage Time”(MFPT)

has invoked interest in recent times[209, 210, 211]. This time interval represents the

average time it takes for the system to start at the potential minimum and to make

its motion all the way out to scission. It included relaxation processes around the first

minimum as well as the sliding down from saddle to scission. The concept of the “tran-
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sient effect” is examined with respect to MFPT in [212, 213]. Our dissipative dynamical

model of fission can be used to investigate this concept and its dependence on initial

conditions. A comparative study of MFPT with the concept of transient time is to

be made to reach at a more definite conclusion. In Ref. [214], the concept of “Mean

Last Passage Time” (MLPT) is proposed for the fission rate defined at the saddle point

and it is concluded that this is a better concept than that of the mean first passage

time(MFPT) since a dynamical effect of descent from the saddle point to the scission

point has been induced in the MLPT. This idea can be checked using our dissipative

dynamical model.

In Ref. [215], one-dimensional Langevin simulations are performed to emphasize

the strong sensitivity of fission transients to the assumed initial shape distribution

of the compound nuclei. Fission delays or transient fission suppressions are found

if the compound nucleus is initially spherical or near spherical, whereas a moderate

initial fissionlike deformation can reduce the magnitude of this suppression (transient

fission enhancement). It is argued that the initial conditions are determined by the

fusion dynamics and thus fission transients are dependent on the entrance channel.

The nature of the transients may change from suppression to an enhancement as the

entrance-channel changes from asymmetric to symmetric. Transient fission will only be

important when there is strong competition from evaporation of light particles and thus

calculations which invoke fission delays (transient effects) to explain the large number

of prescission neutrons measured in experiments should be reexamined in the light of

these considerations and our dissipative dynamical model of fission can be used for this

purpose.

In this work we have considered only those systems where fission follows the for-

mation of an equilibrated compound system and the process is called fusion-fission. In

our model, we have not taken into account any delay effects in the formation phase i.e.,

the previous pre-equilibrium stage is not considered explicitly. This assumption is valid

as long as the decay time of the system is much longer than the equilibration time.

However, at sufficiently high excitation energies when the transient time is compara-

ble to or even greater than the stationary fission life time, quasi-fission or fast-fission
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process needs to be considered. The presence of quasi-fission process inhibits heavy

element formation and thus experimental studies of this process is crucial for the search

of superheavy elemnts[216, 217]. There is an increasing amount of data in which con-

tributions of fast-fission or quasi-fission are identified; i.e. there is a need for modelling

these processes.

In our model, though we calculate the number of prescission protons, alphas and

GDR γ’s, we do not compare them with experimental data because these numbers are

rather small with large statistical uncertainties in the present work. In order to ob-

tain the energy spectrum of the γ multiplicity with a reasonable statistical accuracy,

in particular, it is necessary to perform computation using a much larger ensemble of

trajectories than the one used in the calculation presented in this thesis. This puts

a severe demand on computer time making such computations impractical at present.

However, an alternative approach would be to make use of the time-dependent fission

widths in a full statistical calculation of the compound-nucleus decay. This calculation

would be much faster than the present Langevin dynamical model calculation though

the time-dependent fission widths would be required as input to this statistical model

calculation. The results of the calculation are to be folded with the appropriate detector

response function so that the calculated numbers can be compared to the experimental

data. We plan to perform such calculations in future.

Experimental scenario: The majority of the experimental approaches ded-

icated to the study of nuclear dissipation are based on nucleus-nucleus collisions at

energies that range from 5 A MeV to about 100 A MeV. Among the experimental ob-

servables studied in this type of reactions the most common are the particle[65] and

the γ-ray[67] multiplicities, the angular, mass and charge distributions of the fission

fragments[218], and the fission and evaporation-residue cross sections. Except for the

fission and evaporation-residue cross sections, all these observables give information

on dissipation on the whole path from ground-state deformation to scission, but they

do not allow exploring the deformation range from the ground state to the saddle

point independently. Also, fusion-fission and quasi-fission reactions, which are mostly
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used, induce initial composite systems with large deformation, and therefore they do

not offer suitable conditions for extracting the relevant information at small defor-

mation. Contrary to fusion-fission and quasi-fission reactions, antiproton annihilation

experiments[219, 220, 221, 222], very peripheral transfer reactions[223] and spallation

reactions[204] lead to fissioning nuclei with small deformation and small angular mo-

mentum, simplifying the theoretical description considerably. Fission induced by heavy

ion collisions at relativistic energies offers ideal conditions for investigating dissipation

at small deformation [224]. Two new experimental signatures, namely the partial fis-

sion cross sections and the partial widths of the fission fragment charge distributions

are introduced by these peripheral heavy-ion collisions[203], in order to observe tran-

sient effects in fission. These observations exploit the influence of the excitation energy

on the fission probability and on the fluctuations of the mass-asymmetry degree of

freedom. They are based on the particle-emission clock; however the emission of par-

ticles is translated into a reduction of excitation energy before the system passes the

fission barrier. These new signatures, being sensitive to the dissipation at small de-

formation, is expected to give new insights into still open questions on the strength of

the nuclear dissipation coefficient and its variation with deformation and temperature.

These investigations are planned to be extended to projectiles between uranium and

lead in order to separately vary fissility and induced energy by using secondary beams,

presently available at GSI. Further progress in this field is expected when advanced

installations, e.g, in the planned GSI or RIA future projects, will become available.

They will allow for more sophisticated fission studies by extending the isospin range of

available secondary beams and by adding new capabilities for mass-identification and

light-particle-detection, aiming for kinematically complete experiments with a measure

of excitation energy in individual events.

Chaos-weighted wall friction, which is the friction model used in this thesis does not

have any adjustable parameter and has the same order of magnitude for low deformation

as the empirical frictions which have successfully reproduced experimental data for dif-

ferent observables[85, 179]. In fact CWWF is the only model of deformation dependent

friction derived from physical considerations which is closest to the phenomenological
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frictions of Fröbrich for compact shapes [225]. However, CWWF does not increase

strongly for large deformations as required by the phenomenological friction[85] in or-

der to match the prescission neutron multiplicity data for heavy systems like 251Es with

a long saddle to scission path. Therefore CWWF should be applied to wider variety of

systems and for different types of observables so that distinction between different mod-

els could be made more confidently in order to reach at a better picture. A systematic

analysis and explanation of all the available experimental data should be attempted

using CWWF in a multi-dimensional Langevin dynamical model. This will be a crucial

test for our theoretical model of friction and will help to reach at a definite conclusion

regarding the friction form factor with respect to its deformation (and temperature)

dependence, and finally to arrive at an unified picture for fission of hot nuclei.



Appendix A

Evaluation of the nuclear potential

The potential energy is obtained from the finite-range liquid drop model, where we

calculate the generalized nuclear energy by double folding the uniform density within

the nuclear surface with a Yukawa-plus-exponential potential. The six dimensional

double folding integral for evaluation of the potential is as follows:

I =
∫

d3r1d
3r2f(~r1)f(~r2)v(| ~r1 − ~r2 |) (A.1)

where f and v gives the nuclear density and potential respectively. The above integral

is reduced to that of lower dimensions by the method of Fourier transform. The Fourier

transform in k space of the charge densities and the potential are given by the following

relations.

f(~r1) =
1

(2π)3

∫

d3k1e
−i ~k1·~r1 f̃(~k1)

f(~r2) =
1

(2π)3

∫

d3k2e
−i ~k2·~r2 f̃(~k2)

v(| ~r1 − ~r2 |) =
1

(2π)3

∫

d3ke−i~k·(~r1−~r2)ṽ(~k)

Substituting these fourier transforms in Eq. (A.1), and using the following identities,
∫

d3r1e
−i(k1+k)·r1 = (2π)3δ(k1 + k)

∫

d3r2e
−i(k2−k)·r2 = (2π)3δ(k2 − k).

and exploiting the properties of the delta function, the six dimensional integral is re-

duced to the following three dimensional integral.

I =
1

(2π)3

∫

d3kf̃(~k)f̃(−~k)ṽ(~k) (A.2)
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Since the charge distribution is symmetric i.e., f(~r) = f(−~r), it can be shown that

f̃(~k) = f̃( ~−k) and hence the integration takes the form

I =
1

(2π)3

∫

d3k(f̃(~k))
2
ṽ(~k). (A.3)

where the inverse Fourier transform relations,

ṽ(~k) =
∫

d~rei~k·~rv(~r)

and similarly for f̃(k) are used. If potential is of the coulomb form i.e., v(~r) = 1/r,

then it can shown using contour integration that ṽ(~k) = 4π
k2 . If the potential takes the

exponential form i.e., v(~r) = e−µr, then ṽ(~k) = 8πµ
(µ2+k2)2

. For Yukawa type of potential,

i.e., v(~r) = e−µr/r, ṽ(~k) = 4π
(µ2+k2)

.

f̃(~k) is evaluated in cylindrical coordinate system. Due to axial symmetry in f(~r), f̃(~k)

will also have axial symmetry in k space. Assuming ~k to lie in (y − z) plane, it can be

shown that ~k · ~r = ρkρ cos φ + zkz. Hence in cylindrical coordinate system,

f̃(kρ, kz) =
∫

e(iρkρ cos φ+izkz)f(ρ, z)ρdρdzdφ (A.4)

For uniform density, f(ρ, z) = constant within the defined surface.

∫ 2π

0
e(iρkρ cos φ)dφ = 2πJ0(ρkρ) (A.5)

where J0 is the zeroth order Bessel function. Using the above result,

f̃(kρ, kz) = 2
∫ zmax

0
cos(zkz)

1

k2
ρ

I2(kρρ(z))dz (A.6)

where

I2(β) =
∫ β

0
I1(x)xdx (A.7)

and

I1(x) = 2πJ0(x) (A.8)

I1(x) is calculated for x = 0 to xmax, where x = ρkρ, and using these values of I1(x),

I2(β) is calculated for a wide range of of β ranging from 0 to βmax (β = ρkρ). The

integral is evaluated for different values and the required values are extracted later by

interpolating from the table. The function I2(β) is thus required to be computed only



139

once and can be used as a standard input for any subsequent double folding calculation.

These values are used to evaluate f̃(~k) in Eq. (A.6). The integral in Eq. (A.2) is finally

evaluated in spherical polar coordinates. The final form of Eq. (A.2) is given by

I =
1

2π2

∫ π/2

0

∫ kmax

0
k2dk sin θdθf̃(k sin θ, k cos θ)ṽ(k) (A.9)

where kρ = k sin θ & kz = k cos θ. The k integration is done by dividing the range in

two parts i.e, from 0 to k1 and k1 to k2. The upper cut-off kmax is chosen after ensuring

a very good convergence of the integral. Since the integrand for lower values of k is very

oscillating, the integration here is done with very small step size, while for the second

part integration is performed with a bigger step size. The stability of the potential

calculation by this method is of the order of 1 in 108.



Appendix B

Generation of random numbers

Random number generation following a particular distribution occurs repeatedly at dif-

ferent stages of our calculation. The solution of Langevin equation for fission dynamics

requires the generation of Gaussian distributed random number at each step of time

evolution. Choosing of initial coordinates, momenta and spin of the compound nucleus

also required the generation of random numbers following particular type of distribution

function.

The emission of particles during the fission process as well as the energy of the emit-

ted particles is decided by Monte-Carlo selection where random numbers are required

to be generated following uniform probability distribution. The method for generation

of random numbers following a particular distribution function is described here.

If the numbers x1, x2, . . . , xn−1, xn, are the values of one and the same random

quantity X under independent trials with recurrent conditions following a particular

distribution law, then the sequence of random numbers {xn} is called a random sequence

with that particular distribution. To generate random numbers by computers, it is

convenient to consider the sequence of random numbers uniformly distributed on the

unit interval 0 ≤ x ≤ 1. The probability of generating a number between x and x + dx,

denoted by p(x)dx, for a sequence of random numbers with a uniform and normalised

(
∫+∞
−∞ p(x)dx = 1) probability distribution, is given by

p(x)dx = dx for 0 < x < 1,

= 0 otherwise. (B.1)

If the random sequence {xn} is uniformly distributed on the interval [0, 1], then the
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linear transformation

yn = A + (B − A)xn (n = 1, 2, 3 . . .) (B.2)

(A and B are given numbers) reduces to the random sequence {yn} uniformly distributed

on the interval [A, B].

Now if we generate a uniform deviate x and then take some prescribed function of

it, say y(x), the probability distribution of y, denoted by p(y)dy is determined by the

fundamental transformation law of probabilities, which is simply

| p(y)dy |=| p(x)dx |

p(y) = p(x) | dx

dy
| . (B.3)

For a uniform deviate p(x) = 1 for 0 ≤ x ≤ 1. Hence

p(y)dy =| dx

dy
| dy. (B.4)

Having a random sequence {xn} uniformly distributed on the interval [0, 1], we can

construct a random sequence {yn} with a specified distribution, say one with p(y) =

f(y) for some positive function f whose integral is 1, using the above transformation

method. We need to solve the equation

dx

dy
= f(y) (B.5)

to get y. The solution is

x =
∫ y

−∞
f(y)dy = F (y) (B.6)

i.e., indefinite integral of f(y). Hence the transformation which takes a uniform deviate

into one distributed as f(y) is therefore

y(x) = F−1(x). (B.7)

where F−1 is the inverse function to F . The inverse function can be found analytically

if feasible, otherwise computed numerically by forming a table of the integral values

and the corresponding value is found from the table by interpolation.
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A Gaussian distributed random number is numerically generated following the method

described above. Fig. (B.1) clearly implies that the quality of the random number im-

proves considerably as one increases the number of samplings N . The accuracy of the

algorithm followed is also established by the exactness of the numerically generated

random number. This method is used in all cases for generation of random numbers

following any particular distribution law.

x
-2 0 2

f(
x)

0

1

x
-2 0 2

f(
x)

0

1

Test of  Gaussian distributed random number

N=10000 N=100000

Figure B.1: The solid line in the figures correspond to the function exp (−x2/4); the
filled circles correspond to the generated random numbers following the gaussian dis-
tributed function.



Appendix C

Numerical integration of the Langevin equation

The Langevin equation describing the motion of a free Brownian particle can be solved

analytically to get the mean values of the position and momentum as a function of

time t. As t approaches infinity, the Brownian particle is expected to be in equilibrium

with the heat bath. The average value of the kinetic energy of the Brownian particle

becomes equal to 1
2
T (the temperature T is here in units of energy, i.e. we set the

Boltzman constant k = 1). The one dimensional Langevin equation in (p, q) space with

V = 0 and neglecting the coordinate dependence of the inertia reads as follows:

dp

dt
= −ηq̇ + gΓ(t),

dq

dt
=

p

m
, (C.1)

The analytical solution of the above equation is given by[33]

p = p0 exp(− η

m
t) +

∫ t

0
dt′ exp(− η

m
(t − t′)) · gΓ(t′), (C.2)

q = q0 +
p0

η
[1 − exp(− η

m
t)] +

1

η

∫ t

0
dt′[1 − exp(− η

m
(t − t′))] · g · Γ(t′) (C.3)

where p0 and q0 are the respective initial values. Averaging over all possible realizations

of the random force, the mean value of the momentum and coordinate are given by

〈p〉 = p0 exp(− η

m
t), (C.4)

〈q〉 = q0 +
p0

η
[1 − exp(− η

m
t)], (C.5)

The mean values of the square of position and momentum are given as follows:

〈p2〉 = m · kT · [1 − exp(−2
η

m
t)] + p2

0 exp(−2
η

m
t) (C.6)
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〈(q − q0)
2〉 = (p2

0 − 3mkT )/η2 + 2kT/η · t + 2 · (2mkT − p2
0)/η

2 · exp(− η

m
· t)

+(p2
0 − mkT )/η2 · exp(−2

η

m
· t). (C.7)

The above equation is also solved numerically by integrating it directly by successive

iterations(method explained in chapter 3). The numerical results are compared with

the analytical results for the cases starting with p0 = 0 and p0 =
√

2 · mT .

It is seen from Fig. (C.1) that the numerical results almost coincide with the analytical

solution at any steps. We also see that the Brownian particle approaches the thermal

equilibrium with the heat bath, i.e., 〈p2〉 → 〈p2〉eq(= m · T ) irrespective of the initial

momenta. The numerical results for 〈q2〉 are also very well reproduced. The errors are

within (1 ∼ 2)% which is comparable with 1/
√

N where N is the number of trajectories.

These results establish the accuracy and convergence of our algorithm for solving the

Langevin equation which is subsequently used in fission dynamics.
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Figure C.1: 〈p2〉 & 〈q2〉 of the free Brownian particle starting with two different initial
momenta p0. Solid line represent the analytical solution while the filled circles depict
the numerical results.



Appendix D

Units and Dimensions

Langevin dynamics

The units and dimensions used for different dynamical variables in the Langevin dy-

namics will be described here. The different input quantities for the fission dynamics

including the shape degrees of freedom for the collective motion are described in details

in chapter 2.

(A) Shape degrees of freedom:

c and h are the shape variables for the fission degrees of freedom. Both c & h are

dimensionless while co(= cR) (R is radius) has the dimension of length and its unit

is fm. The surface of the nucleus is defined by the following expression in cylindrical

coordinates,

ρ2(z) =

(

1 − z2

c2
o

)

(aoc
2
o + boz

2), (D.1)

where ao and bo are dimensionless (expressions given in section 2.2), ρ has the dimension

of length and unit is fm.

(B) Inertia:

The inertia is given by the following equation, the different quantities used being already

explained in the subsection 2.3.4.

Mij = πρm

∫ zmax

zmin

P 2(AiAj +
1

8
P 2A′

iA
′
j)dz, (D.2)

In the above expression, ρm is the matter density, the unit is amu/fm3. P is the value

of ρ on the nuclear surface and hence has the dimension of length, unit is fm. The

mathematical definition of Ai is given in section 2.3.4, from which its dimension reduces
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to that of length, since in our choice of units, q(c & h) is dimensionless. The unit of z

being fm, inertia has the unit of amu · fm2.

(C) Friction:

The friction coefficient η is given by the following expression

η =
1

2
πρmv̄

∫ zmax

zmin

(

∂ρ2

∂c

)2


ρ2 +

(

1

2

∂ρ2

∂z

)2




− 1
2

dz, (D.3)

The unit of v̄ (average nucleon speed) is MeV 1/2amu−1/2, the units of other quantities

being already, defined η has the unit of amu1/2MeV 1/2fm.

(D) Momentum:

It is conventional to express time interval in units of h̄/MeV in the calculations of

fission dynamics and we will also follow the same convention. The following relations

will be useful for the required conversion of units.

h̄ = 6.4655MeV 1/2amu1/2fm = 65.82 × 10−23MeV sec (D.4)

and

fm2amu =
h̄2

MeV
· 1

(6.4655)2
(D.5)

It is convenient to express inertia and friction coefficients in units of h̄ and MeV. To

convert µ(= 1/m) (inverse of inertia) given in units of amu−1fm−2 to that in MeV
h̄2 ,

one needs to multiply it by the conversion factor (6.4655)2 as seen is seen from Eq.

D.5. Similarly to express the friction coefficient η in units of h̄, one needs to divide η

given in units of amu1/2MeV 1/2fm by the factor 6.4655 as is evident from Eq. D.4. The

equation dc
dt

= µp gives for momentum p the units of ( h̄2

MeV
· MeV

h̄
), c being dimensionless.

Hence momentum has units of h̄.

(E) Energy:

Energy is expressed in units of MeV and so is the temperature T . It can be checked

that the kinetic energy p2

2
µ has units of h̄2 × MeV

h̄2 ⇒ MeV.

The units of different input quantities for the Langevin equation being defined, it can

be checked whether the different terms of the equation has the correct dimensions and

units. The time evolution equation for the momentum p is as follows

p(t + ∆t) = p(t) + (−p2

2

∂µ

∂c
− ∂F

∂c
− ηµp)∆t +

√
∆t
√

ηTω1(t). (D.6)
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All the quantities in the above Langevin equation is converted and expressed in units

involving MeV and h̄. The l.h.s has unit of h̄. It can be checked that all the terms in

r.h.s also has the same unit.

p2

2
∂µ
∂c

∆t ⇒ h̄2 · MeV
h̄2 · h̄

MeV
⇒ h̄

∂F
∂c

∆t ⇒ MeV · h̄
MeV

⇒ h̄

ηµp∆t ⇒ h̄ · MeV
h̄2 · h̄ · h̄

MeV
⇒ h̄

√

(∆t)ηTω1 ⇒ ( h̄
MeV

· h̄ · MeV )
1/2 ⇒ h̄ (ω1 is a number and is hence dimensionless)

Thus it is verified that the system of units used in the Langevin dynamics is consistent

and all the variables has the correct dimensions.

Particle emission width

In Langevin dynamics, though it is conventional to express time in units of h̄/MeV ,

in the calculation of particle emission widths, time is normally expressed in units of

fm/c (= 3.33× 10−24sec). Since in our model it is required to couple particle emission

with the fission dynamics, appropriate conversions for the corresponding units should

be made so that the final dimensions are correct. The particle emission width is given

by the following formula

Γν = (2sν + 1)
mν

π2h̄2ρc(E∗)

∫ E∗−Bν

0
dενρR(E∗ − Bν − εν)ενσinv(εν) (D.7)

The different quantities used in the above equation is explained in section 4.2.4. It is

important to note that

h̄c = 197.32MeV fm (D.8)

mpc
2 = 938.9MeV. (D.9)

To make proper use of the units, the numerator and denominator of the r.h.s of Eq.

D.7 is multiplied by c2 and the final expression has the dimension of (substituting the

conversions used in Eqs. D.8 & D.9)

r.h.s ⇒ dεν(MeV )σinv(fm2)mνc
2(MeV )εν(MeV )

(h̄c)2(MeV 2fm2)
⇒ MeV. (D.10)

The decay width thus rightly is expressed in units of MeV and the corresponding decay

time τν which equals h̄/Γν is in units of time ( h̄
MeV

)and can be converted to units of

fm/c using Eq. D.8.



Appendix E

Energetics

The energy conservation followed during the emission of a particle from the compound

nucleus is given by the following equation.

MA+(B.E)A+E∗
A+

lA(lA + 1)h̄2

2IA
= Md+(B.E)d+E∗

d +
ld(ld + 1)h̄2

2Id
+Mp+(B.E)p+Ep

(E.1)

The subscript A is for the parent compound nucleus with mass number A, atomic

number Z and neutron number N , whereas d stands for the daughter nucleus after

emission of a particle (subscript p) from the compound nucleus. M denotes the mass

which for the parent nucleus equals Nmn + Zmp where mp and mn are proton and

neutron masses respectively. Hence, by definition, MA will cancel with Md + Mp. B.E

stands for the binding energy which is calculated by the liquid drop mass formula of

Myers and Swiatecki which is given at the end of this Appendix. If the emitted particle

is not a composite particle, i.e, if it is a neutron or a proton then the corresponding

binding energy is zero. E∗
A and E∗

d gives the excitation energies of the parent and

daughter nucleus respectively. Ep is the kinetic energy of the emitted particle which

can vary from zero to a maximum value fixed from the above energy balance equation

by setting the excitation energy of the daughter nucleus E∗
d to a minimum possible

value. This minimum excitation energy of the daughter nucleus is determined from the

considerations of level density of the nucleus which should have some finite value. Zero

value of kinetic energy of the emitted particle correspond to maximum excitation of the

daughter nucleus. l(l + 1)h̄2/2I gives the rotational energy of a nucleus with angular

momentum lh̄ and moment of inertia I. lA and ld gives the angular momenta of the

parent and the daughter nucleus where we usually take ld = lA − 1 for the emitted
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neutron or γ.

The binding energy of of a nucleus with mass number A, proton number Z and

neutron number N is given by the liquid drop model of Myers and Swiatecki[134] which

is given by the following expression.

B.E = −c1A + c2A
2/3 +

c3Z
2

A1/3
− c4Z

2

A
+ ∆ (E.2)

where

c1 = 15.677

[

1 − 1.79
(

A − 2Z

A

)2
]

c2 = 18.56

[

1 − 1.79
(

A − 2Z

A

)2
]

(E.3)

c3 = 0.717 and c4 = 1.2113. The first term on the r.h.s of Eq. E.2, i.e., c1A is the

sum of the volume energy term which is proportional to the mass number A and the

volume-asymmetry energy term which is proportional to (A − 2Z)2/A. The second term

c2A
2/3 is the sum of the surface energy term being proportional to A2/3 and the surface

asymmetry energy term proportional to I2A2/3 where I equals (A − 2Z)/A. The third

term c3Z
2/A1/3 is the direct sharp-surface Coulomb energy whereas c4Z

2/A gives the

surface-diffuseness correction to the direct Coulomb energy. The shell correction is not

included in the binding energy formula since in fission dynamics of excited nuclei, both

the parent and the daughter nuclei are hot, and shell corrections need not be considered.

∆ gives the pairing energy correction and is given by the following formulas.

∆ = − 11√
A

for even-even nuclei,

= 0 for even-odd or odd-even nuclei,

= +
11√
A

for odd-odd nuclei. (E.4)



Appendix F

Brief description of the computer codes

The different computer codes developed and used in the thesis will be briefly mentioned

here. The codes were all written in Fortran language and the computational work was

done using ES-40 server with alpha CPU (21264A) having clock speed 667 MHz.

CHAOTICITY

The code named by us as “CHAOTICITY” was obtained from Professor J. Blocki of

Institute for Nuclear Research, Swierk, Poland. This code calculates the chaos factor

of different nuclear shapes starting from spherical to the scission configuration. The

method is based on calculating the Lyapunov exponent of a large number of classical

trajectories (typically 10000 or more), from which the chaos factor is extracted. The

procedure for calculation of Lyapunov exponent of a trajectory by following it classically

in time is explained in section 2.4.3. As part of the thesis work, the above code was

modified suitably to incorporate the Brack shape parametrization which is used in our

model to represent a hot fissioning nuclei. The initial code as obtained was for volume

sampling of trajectories. It was modified by us so that surface sampling of trajectories

is possible which is required for our purpose. The chaos factor is calculated for a wide

range of the dynamical coordinates c and h. Values of c range from 0.6 to 2.1 in steps

of 0.01, whereas for each value of c , h ranges from -1.5 to 1.5 in steps of 0.1. A typical

calculation of chaos factor(for 1000 trajectories) for a particular value of c and h takes

about 2.22 minutes of computer time.
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POTFOLD

The code named as “POTFOLD”(POTential FOLDing) was developed as part of this

thesis work. This code calculates the potential energy of nuclei of different mass and

atomic number as function of the deformation coordinates c and h. “POTFOLD” in-

cludes both the nuclear and the coulomb part of the potential. The potential landscape

in (c, h) coordinates is generated from the finite-range liquid drop model where we

calculate the generalized nuclear energy by double folding the uniform density with

Yukawa-plus-exponential potential. The Coloumb energy is obtained by double folding

another Yukawa function with the density distribution. The detailed description of the

potential used can be found in chapter 2 and the techniques used for simplifying and

solving the integrals is given in Appendix A. The potential is calculated for the same

range of c and h as the chaos factor mentioned above. A typical calculation of potential

for a nuclei of mass number 224 for a particular value of c and h takes about 8.8 seconds

of computer time.

FISSWDTH

The calculation of prescission neutron multiplicity and fission probability proceeds

through two stages. In the first part the fission width of a nucleus is calculated dy-

namically which is required for the next part of the calculation. This code named as

“FISSWDTH”(FISSion WiDTH) is developed to calculate the dynamical fission rate or

fission width of a nucleus for a particular angular momentum and excitation energy, by

numerically solving the Langevin equation. This code considers only one mode of decay

of the compound nucleus i.e, fission, and does not include particle or gamma emissions.

The fission widths calculated from this code for different values of energy and angular

momentum is used for the parametric representation of fission width which serve as in-

put for the statistical branch of the main code(to be described next). The chaos factor

and potential which are calculated using the codes mentioned above are used as input

for this code. The other inputs required for the calculation of fission width like the

friction and inertia are calculated within this code “FISSWDTH”. The different steps

involved in the procedure for calculation of fission width is described in section 3.2. A
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Langevin trajectory is followed in time till it reaches the fission fate and the calculation

is repeated for a large number (typically 100,000) of trajectories so that fluctuations

in the steady value is minimised (better averaging is possible) and a reliable value of

fission width can be extracted from its saturation value. A typical calculation of fission

width for thorium nucleus(A=224) for angular momentum 30h̄ and temp 2 MeV takes

about 4.72 hours of computer time.

DYSTCNF

This code called “DYSTCNF” is developed as part of the thesis work to calculate the

prescission neutron multiplicity and fission probability of different nuclei. The name

stands for ‘DYnamical plus STatistical Code for Nuclear Fission’. As the name implies,

the code uses a combined dynamical plus statistical model where light particle evapora-

tion is coupled with Langevin dynamics followed by a statistical branch based on Monte

Carlo cascade procedure. The different steps of the calculation is discussed thoroughly

in section 4.2. The mass and atomic number of target and projectile, laboratory energy

of the projectile and Q value of the reaction are given as inputs to this code. The cal-

culation in the code starts from the formation of a compound nucleus from the fusion

of target and projectile, the total excitation energy of the fused nuclei being calculated

from the projectile energy and Q value. The initial conditions for the dynamical coor-

dinates as well as the angular momenta are obtained by sampling suitable distribution

functions which are suitably incorporated in different subprograms of the code. The

potential values being supplied by the code ’POTFOLD’, a suitable minimization rou-

tine finds the minimum in the two dimensional (c,h) valley. Different subprograms are

developed in the main code to calculate the free energy, inertia, level density parame-

ter, moment of inertia of the nucleus for different values of the dynamical coordinates

c and h. Wall and Window friction values for different nuclear shapes calculated in a

subprogram is suitably combined with the values of the chaos factor obtained from the

code ’CHAOTICITY’ to generate the values of the chaos-weighted wall friction values,

the testing of which in fission dynamics being the main emphasis of the thesis. The

formulas and mathematical expressions for different input parameters calculated in this
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code are given in chapter 2 of the thesis. The particle emission widths required for the

evaporation probability of the particles are calculated within this code while the fission

widths are obtained from the separately developed code ’FISSWDTH’. The neutron

widths for different mass number(A), angular momentum(l) and excitation energy(E∗)

of the parent nucleus are calculated and stored by constructing a three dimensional

matrix wdthn(i,j,k) where the indices i, j and k stand for mass number, angular mo-

mentum and excitation energy respectively. The required values are obtained from this

matrix by interpolation. The energy of the emitted particles obtained by sampling the

energy spectrum of each type and the binding energy of the emitted particles calculated

from the mass of the parent and daughter nuclei using the global liquid-drop param-

eters of Myers and Swiatecki (Appendix E) are taken care of in different subroutines

of the main code. The different time steps like τ (time step for numerical integration

of Langevin equations), τeq (time from where the statistical part of the code starts)

and tmax(total time up to which a trajectory is followed) are all given as inputs to this

code. The calculation in the code terminates with each trajectory reaching the scission

point or ending up as an evaporation residue. A few trajectories may not reach either

of these fates within the total specified time tmax (which is chosen to be sufficiently

large) and the calculation is stopped there for those trajectories. The whole calculation

is repeated for a large ensemble of trajectories and the final outputs like the prescission

neutron multiplicity, fission probability or evaporation residue probability are extracted

by suitably averaging the numbers obtained from the ensemble. A typical calculation

for 224Th for 20000 trajectories for projectile energy 100MeV takes about 60 hours of

computer time. A schematic sketch of the calculational procedure used in this code is

given by the flow chart in Appendix G.



Appendix G

Schematic sketch of the calculational procedure

The flow diagram (Fig. G.1) displays schematically the logical sequence of the actual

calculations described in the combined dynamical plus statistical model in chapter 4,

which essentially constitutes the code “DYSTCNF” referred in Appendix F . The main

steps of the algorithm used in the calculation are shown in the flow chart, others being

omitted to make the diagram look simple. The different symbols and logical steps

shown in the figure is being explained here. The diagram explains the different steps

followed by a trajectory from a compound nucleus till it end up as an evaporation

residue or reaches the fission criteria. The flow chart starts with a compound nucleus

(CN) of mass A with a particular angular momentum L and excitation energy E∗. If

the excitation energy E∗ is less than minimum of Bn(binding energy of neutron) and

Bf(fission barrier), then the compound nucleus forms an evaporation residue and adds

to Nres which gives the total number of evaporation residue formed. The calculation

proceeds if this condition is not satisfied. The dynamical coordinate and momentum at

time t being given by ct and pt respectively, evolve in time following Langevin equations

and change over to ct+τ and pt+τ , τ being the time step of integration of the Langevin

equations. After each time step, the criteria for scission is checked, i.e, whether the

coordinate c reaches the scission point csci. The condition being satisfied, it adds to

the total number of fission events which is given by Nfiss, and the calculation stops

there. If the fission condition is not reached, the calculation for the trajectory proceeds

to check for the emission of light particles and gamma. The emission of only neutron

and gamma is shown in the flow chart. The Monte Carlo selection procedure (described

in section 4.2.3) is used to decide whether any emission takes place as well as the type
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of emission (neutron or γ). The energy of the emitted particles is also calculated by

Monte-Carlo procedure (not shown in the flow chart), using the integrand of the formula

for the corresponding decay width as weight function. The mass number, excitation

energy and angular momentum are adjusted properly after each emission of neutron or

gamma. ε gives the energy of the emitted particle. After checking for particle emission,

the total elapsed time t is compared with τeq. When the total time of calculation in

the dynamical branch exceeds the equilibration time τeq and the fission criteria is not

yet reached, one switches over to the statistical branch as explained in section 4.2.4. In

the statistical branch, the possibility of any particle/γ emission or fission and the kind

of emission at each time step is checked following the same criteria as in the dynamical

branch. The fission width obtained in a separate calculation is used as input for the

statistical branch and compared with the particle/γ widths to decide the possibilities.

The time step τ in the statistical branch is redefined after each step as τ = τdecay/10000,

where τdecay = 1/Γtot, and Γtot = Γn + Γγ + Γf . The final fate of a trajectory (fission or

evaporation residue) may be reached from either the dynamical part or the statistical

one, each adding up to the respective numbers Nfiss or Nres. The total number of

neutrons emitted in the dynamical branch (ndyna) is added to that emitted from the

statistical branch (nstat) to get the total number of neutrons Nn. This number is divided

by the total number of fission events Nfiss to get the prescission neutron multiplicity

npre. If a trajectory neither fissions nor reaches the evaporation residue within the total

time tmax specified for the combined dynamical plus statistical calculation, then the

calculation is stopped there with the fate of the trajectory still undecided. However,

tmax is taken to be sufficiently long so that the number of such “undecided” trajectories

is statistically insignificant.
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[47] P. Fröbrich, in: H. Feldmeier(Ed.), Proc. Gross properties of nuclei and nuclear

excitations XV, Hirschegg, Austria, (1987) 230.

[48] Y. Abe, S. Ayik, P.-G. Reinhard, E. Suraud, Phys. Rep. 275 (1996) 49.

[49] U. Eckern et al., J. Stat. Phys. 59 (1990) 885.

[50] H. Hofmann, R. Samhammer and S. Yamaji, Phys. Lett. B 229 (1989) 309.



160

[51] V. Weisskopf, Phys. Rev. 52 (1937) 295.
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[59] P. Grangé, P. Hassani, H.A. Weidenmüller, A. Gavron, J.R. Nix, A.J. Sierk,

Phys. Rev. C 34 (1986) 209.

[60] D.J. Hinde, R.J. Charity, G.S. Foote, R.J. Leigh, J.D. Newton, S. Osaza, A. Chat-

terjee, Nucl. Phys. A 452 (1986) 550.

[61] J.P. Lestone et. al., Phys. Rev. Lett. 67 (1991) 1078.

[62] J.O.Newton, D.J.Hinde, R.J. Charity, J.J.M. Bokhorst, A. Chatterjee, G.S. Foote,

S. Ogaza, Nucl Phys. A 483 (1988) 126.

[63] M. Thoennessen, G.F. Bertsch, Phys. Rev. Lett.. 71 (1993) 4303.

[64] J.O. Newton, Sov. J. Part. Nucl. 21 (1990) 349.

[65] D. Hilscher, H. Rossner, Ann. Phys. Fr. 17 (1992) 471.

[66] D.J. Hinde, Nucl. Phys. A 553 (1993) 255c.

[67] P. Paul, M. Thoennessen, Ann. Rev. Part. Nucl. Sci. 44 (1994) 65.



161

[68] D. Hilscher, I.I. Gontchar and H. Rossner, Physics of Atomic Nuclei 57 (1994)

1187.

[69] D.J. Hofman, B.B. Back and P. Paul, Phys. Rev. C 51 (1995) 2597.
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[178] N.D. Maviltov, P. Fröbrich, and I.I. Gontchar, Z. Phys. A 342 (1992) 195.

[179] P. N. Nadtochy, A.V. Karpov, D.V. Vanin, and G.D. Adeev, Phys. At. Nucl. 66

(2003) 1203.
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